Активные и реактивные сопротивления. Активное сопротивление, индуктивность, емкость. Мощность в цепи с реактивными радиоэлементами

Объясняет, что если по концам какого-то участка цепи приложить разность потенциалов, то под ее действием потечет электрический ток, сила которого зависит от сопротивления среды.

Источники переменного напряжения создают ток в подключенной к ним схеме, который может повторять форму синусоиды источника или быть сдвинутым по углу от него вперед либо назад.

Если электрическая цепь не изменяет направления прохождения тока и его вектор по фазе полностью совпадает с приложенным напряжением, то такой участок обладает чистым активным сопротивлением. Когда же наблюдается отличие во вращении векторов, то говорят о реактивном характере сопротивления.

Различные электротехнические элементы обладают неодинаковой способностью отклонять направление тока, протекающего через них и изменять его величину.

Реактивное сопротивление катушки

Возьмем источник стабилизированного переменного напряжения и отрезок длинной изолированной проволоки. Вначале подключим генератор на всю расправленную проволоку, а затем на ее же, но смотанную кольцами вокруг , который используется для улучшения прохождения магнитных потоков.

Точно замеряя в обоих случаях ток, можно заметить, что при втором эксперименте будет замечено значительное снижение его величины и отставание по фазе на определенный угол.

Это происходит за счет возникновения противодействующих сил индукции, проявляющихся под действием закона Ленца.


На рисунке прохождение первичного тока показано красными стрелками, а создаваемое им магнитное поле - синими. Направление его движения определяется по правилу правой руки. Оно же пересекает все соседние витки внутри обмотки и индуцирует в них ток, показанный зелеными стрелками, который ослабляет величину приложенного первичного тока, одновременно сдвигая его направление по отношению к приложенной ЭДС.

Чем большее число витков намотано на катушке, тем сильнее создается индуктивное сопротивление X L , уменьшающее первичный ток.

Его величина зависит от частоты f, индуктивности L, рассчитывается по формуле:

X L = 2πfL = ωL

За счет преодоления сил индуктивности ток на катушке отстает от напряжения на 90 градусов.

Реактивное сопротивление трансформатора

У этого устройства на общем магнитопроводе расположены две или большее количество обмоток. Одна из них получает электроэнергию от внешнего источника, а другим она передается по принципу трансформации.


Первичный ток, проходящий по силовой катушке, наводит в магнитопроводе и вокруг него магнитный поток, который пересекает витки вторичной обмотки и формирует в ней вторичный ток.

Поскольку идеально создать невозможно, то часть магнитного потока будет рассеиваться в окружающую среду и создаст потери. Они называются потоком рассеивания и влияют на величину реактивного сопротивления рассеяния.

К ним добавляется активная составляющая сопротивления каждой обмотки. Полученная суммарная величина называется электрическим импедансом трансформатора или его Z, создающим перепады напряжения на всех обмотках.

Для математического выражения взаимосвязей внутри трансформатора активное сопротивление обмоток (обычно изготавливаемых из меди) обозначают индексами «R1» и «R2», а индуктивное - «Х1» и «Х2».

Импеданс в каждой обмотке имеет вид:

    Z1=R1+jX1;

    Z2=R1+jX2.

В этом выражении индексом «j» обозначена мнимая единица, расположенная на вертикальной оси комплексной плоскости.

Наиболее критичный режим в отношении индуктивного сопротивления и возникновении реактивной составляющей мощности создается при параллельном подключении трансформаторов в работу.

Реактивное сопротивление конденсатора

Конструктивно в его состав входят две или несколько токопроводящих пластин, отделенных слоем материала, обладающего диэлектрическими свойствами. За счет этого разделения постоянный ток не может пройти через конденсатор, а переменный - способен, но с отклонением от первоначальной величины.


Ее изменение объясняется принципом работы реактивного - емкостного сопротивления.

Под действием приложенного переменного напряжения, изменяющегося по синусоидальной форме, на обкладках происходит всплеск, накопление зарядов электрической энергии противоположных знаков. Общее их количество ограничено габаритами устройства и характеризуется емкостью. Чем она больше, тем дольше времени идет заряд.

В течение следующего полупериода колебания полярность напряжения на обкладках конденсатора меняется на противоположное. Под его воздействием происходит смена потенциалов, перезарядка сформированных зарядов пластин. Таким способом создается протекание первичного тока и противодействие его прохождению, когда он уменьшается по величине и сдвигается по углу.

По этому вопросу у электриков есть шутка. Постоянный ток на графике представлен прямой линией и когда он идет по проводу, то электрический заряд, дойдя до обкладки конденсатора упирается в диэлектрик, попадая в тупик. Эта преграда не дает ему пройти.


Синусоидальная же гармоника идет переваливаясь через препятствия и заряд, свободно перекатившись через нарисованные обкладки, теряет небольшую часть энергии, которая зацепилась за пластины.

У этой шутки есть скрытый смысл: при подаче на обкладки постоянного или выпрямленного пульсирующего напряжения между пластинами за счет накопления ими электрических зарядов создается строго постоянная разность потенциалов, которая сглаживает все скачки питающей цепи. Это свойство конденсатора увеличенной емкости используется в стабилизаторах постоянного напряжения.


В общем, емкостное сопротивление Xc или противодействие прохождению через него переменному току зависит от конструкции конденсатора, определяющей емкость «С», и выражается формулой:

Хс = 1/2πfC = 1/ω C

За счет перезарядки обкладок ток через конденсатор опережает напряжение на 90 градусов.

Реактивное сопротивление линии электропередачи

Любая ЛЭП создается для передачи электрической энергии. Ее принято представлять участками со схемами замещения, обладающими распределенными параметрами активного r, реактивного (индуктивного) x сопротивления и проводимости g, отнесенными к единице длины, как правило, одному километру.


Если пренебречь влиянием емкости и проводимости, то можно пользоваться упрощенной схемой замещения линии, обладающей сосредоточенными параметрами.

Воздушная ЛЭП

Передача электроэнергии по неизолированным проводам, расположенным на открытом воздухе, требует значительного удаления их между собой и от земли.

При этом индуктивное сопротивление одного километра провода трехфазной линии можно представить выражением Х0. Оно зависит от:

    среднего удаления осей проводов между собой аср;

    наружного диаметра фазных жил d;

    относительной магнитной проницаемости материала µ;

    внешнего индуктивного сопротивления линии Х0’;

    внутреннего индуктивного сопротивления линии Х0’’.

Для справки: индуктивное сопротивление 1 км ВЛ, выполненной из цветного металла составляет порядка 0,33÷0,42 Ом/км.

Кабельная ЛЭП

Линия электропередачи, использующая высоковольтный кабель, конструктивно отличается от ВЛ. У нее расстояние между фазами проводов значительно уменьшено и определяется толщиной слоя внутренней изоляции.


Такой трехжильный кабель можно представить в виде конденсатора с тремя обкладками из жил, протянутых на большое расстояние. С увеличением его протяженности возрастает емкость, снижается емкостное сопротивление и увеличивается емкостной ток, замыкающийся по кабелю.

В кабельных линиях под воздействием емкостных токов наиболее часто происходят однофазные замыкания на землю. Для их компенсации в сетях 6÷35 кВ используют дугогасящие реакторы (ДГР), которые подключают через заземленную нейтраль сети. Их параметры подбираются сложными методами теоретических расчетов.

Старые ДГР не всегда эффективно работали из-за низкого качества настройки и несовершенства конструкции. Они создавались под усредненные расчетные токи замыканий, которые часто отличались от реальных значений.

Сейчас внедряются новые разработки ДГР, способные в автоматическом режиме отслеживать аварийные ситуации, быстро замерять их основные параметры и подстраиваться для надежного гашения токов замыкания на землю с точностью до 2%. Благодаря этому эффективность работы ДГР сразу возросла на 50%.

Принцип компенсации реактивной составляющей мощности конденсаторными установками

Электрические сети передают высоковольтную электроэнергию на огромные расстояния. Большинством ее потребителей являются электродвигатели, обладающие индуктивным сопротивлением, и резистивные элементы. Полная мощность, направляемая потребителям, состоит из активной составляющей Р, расходуемой на совершение полезной работы, и реактивной Q - вызывающей нагрев обмоток трансформаторов и электродвигателей.

Реактивная составляющая Q, возникая на индуктивных сопротивлениях, снижает качество электроэнергии. Для уничтожения ее вредного воздействия в восьмидесятых годах прошлого века в энергосистеме СССР использовалась схема компенсации за счет подключения конденсаторных батарей, обладающих емкостным сопротивлением, которое снижало φ.


Они устанавливались на подстанциях, непосредственно питающих проблемных потребителей. Этим обеспечивалось местное регулирование качества электроэнергии.

Таким способом можно значительно уменьшить нагрузку на оборудование за счет снижения реактивной составляющей при передаче одной и той же активной мощности. Этот способ считается наиболее эффективным приемом энергосбережения не только на промышленных предприятиях, но и на объектах ЖКХ. Его грамотное использование позволяет значительно повысить надежность эксплуатации энергосистем.

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента – , который, как говорят, обладает активным сопротивлением . Еще иногда его называют омическим . Как нам говорит вики-словарь, “активный – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора ? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится


А также :


С помощью него мы будем смотреть напряжение и силу тока .

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта .

Кто не помнит – напомню. Имеем обыкновенный резистор:

Что будет, если через него прогнать электрический ток ?


На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах


И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи : I=U/R . Отсюда U=IR . Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока;-)

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому, наша схема примет вот такой вид:

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма – это напряжение с генератора U ген , а желтая осциллограмма – это напряжение с шунта U ш , в нашем случае – сила тока. Смотрим, что у нас получилось:

Частота 28 Герц:


Частота 285 Герц:


Частота 30 Килогерц:


Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:



Как мы видим, сила тока полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно , то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Смотрим осциллограммы:


Как вы видите, конденсатор обладает сопротивлением, так как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T – это


Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:


Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока


Красная осциллограмма – это напряжение, которое мы подаем на конденсатор, а желтая – это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.


100 Герц


200 Герц


Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

где

Х с – реактивное сопротивление конденсатора, Ом

F – частота, Гц

С – емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:


Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Видите разницу? На катушке индуктивности ток отстает от напряжения на 90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током, ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.


Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Все с точностью наоборот! Можно даже сказать, что катушка – это полная противоположность конденсатору;-)

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц


34 Килогерца


17 Килогерц


10 Килогерц


Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

где

Х L – реактивное сопротивление катушки, Ом

П – постоянная и приблизительно равна 3,14

F – частота, Гц

L – индуктивность, Генри

Почему не сгорает первичная обмотка трансформатора

Ну и теперь главный вопрос, который часто задают в личке: “Почему когда я меряю первичную обмотку трансформатора, у меня выдает от 10 Ом и больше в зависимости от трансформатора. На трансформаторных сварочных аппаратах вообще пару Ом! Ведь первичная обмотка трансформатора цепляется к 220 Вольтам! Почему не сгорает обмотка, ведь сопротивление обмотки всего то десятки или сотни Ом, и может случится !

А ведь и вправду, мощность равна как напряжение помноженное на ток P=IU . То есть через пару секунд от первичной обмотки трансформатора должен остаться уголек.

Дело все в том, что парные обмотки трансформатора представляют из себя катушку индуктивности с какой-то индуктивностью. Получается, что реальное сопротивление обмотки будет выражаться через формулу

поставьте сюда индуктивность, которая в трансформаторах составляет от единицы Генри и получим что-то типа от 300 и более Ом. Но это еще цветочки, ягодки впереди;-)

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или П/2 .


Мощность в цепи с реактивными радиоэлементами

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность – это сила тока помноженное на напряжение, то есть P=IU . Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2 . Здесь ток со знаком “плюс”, а напряжение со знаком “минус”. В итоге плюс на минус дает минус. Получается мощность со знаком “минус”. А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Не знаю, какое было у вас детство, но я когда был салабоном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем “плющить” пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно – это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо – это уже другая история для полноценной статьи.

В третий промежуток времени t3 и ток и напряжение у нас со знаком “минус”. Минус на минус – это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4 , снова ее отдает, так как плюс на минус дает минус.

В результате за весь период у нас суммарное потребление энергии равно чему?


Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:


где

R L – это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи. Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L – собственно сама индуктивность катушки

С – межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:


где

r – сопротивление диэлектрика и корпуса между обкладками

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (ESL) – эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Сопротивление конденсатора вычисляется по формуле:

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Активное и реактивное сопротивления

Сопротивление, оказываемое проходами и потребителями в цепях постоянного тока, называется о мическим сопротивлением.

Если какой-либо проводник включить в цепь переменного тока, то окажется, что его сопротивление будет несколько больше, чем в цепи постоянного тока. Это объясняется явлением, получившим название скин-эффекта ().

Сущность его заключается в следующем. При прохождении переменного тока по проводнику внутри него существует переменное магнитное поле, пересекающее проводник. Магнитные силовые линии этого поля индуктируют в проводнике ЭДС , однако она будет не одинаковой в различных точках сечения проводника: к центру сечения на больше, а к периферии - меньше.

Это объясняется тем, что точки, лежащие ближе к центру, пересекаются большим числом силовых линий. Под действием этой ЭДС переменный ток будет распределяться не по всему сечению проводника равномерно, а ближе к его поверхности.

Это равносильно уменьшению полезного сечения проводника, а следовательно, увеличению его сопротивления переменному току. Например, медный провод длиной 1 км и диаметром 4 мм оказывает сопротивление: постоянному току - 1,86 ом, переменному частотой 800 гц - 1,87 ом, переменному току частотой 10000 гц - 2,90 ом.

Сопротивление, оказываемое проводником проходящему на нему переменному току, называется активным сопротивлением .

Если какой-либо потребитель не содержит в себе индуктивности и емкости (лампочка накаливания, нагревательный прибор), то он будет являться для переменного тока также активным сопротивлением.

Активное сопротивление - физическая величина, характеризующая сопротивление электрической цепи (или её участка) электрическому току, обусловленное необратимыми превращениями электрической энергии в другие формы (преимущественно в тепловую). Выражается в омах.

Активное сопротивление зависит от , возрастая с ее увеличением.

Однако многие потребители обладают индуктивными и емкостными свойствами при прохождении через них переменного тока. К таким потребителям относятся трансформаторы, дроссели, различного рода провода и многие другие.

При прохождении через них необходимо учитывать не только активное, но и реактивное сопротивление , обусловленное наличием, в потребителе индуктивных и емкостных свойств его.

Известно, что если постоянный ток, проходящий по какой-либо обмотке, прерывать и замыкать, то одновременно с изменением тока будет изменяться и магнитный поток внутри обмотки, в результате чего в ней возникнет ЭДС самоиндукции.

То же самое будет наблюдаться и в обмотке, включенной в цепь переменного тока, с той лишь разницей, что здесьток непрерывно изменяется как по величине, так и по направлению. Следовательно, непрерывно будет изменяться величина магнитного потока, пронизывающего обмотку, и в ней будет индуктироваться .

Но направление ЭДС самоиндукции всегда таково, что противодействует изменению тока. Так, при возрастании тока в обмотке ЭДС самоиндукции будет стремиться задержать нарастание тока, а при убывании тока, наоборот, будет стремиться поддержать исчезающий ток.

Отсюда следует, что ЭДС самоиндукции, возникающая в обмотке (проводнике), включенной в цепь переменного тока, будет всегда действовать против тока, задерживая его изменения. Иначе говоря, ЭДС самоиндукции можно рассматривать как дополнительное сопротивление, оказывающее вместе с активным сопротивлением обмотки противодействие проходящему через обмотку переменному току.

Сопротивление, оказываемое переменному току ЭДС самоиндукции, носит название индуктивного сопротивления .

Индуктивное сопротивление будет тем больше, чем больше индуктивность потребителя (цепи) и выше частота переменного тока. Это сопротивление выражается формулой xl = ωL, где xl - индуктивное сопротивление в омах; L - индуктивность в генри (гн); ω - угловая частота где f - частота тока).

Кроме индуктивного сопротивления существует емкостное сопротивление , обусловливаемое как наличием емкости в проводниках и обмотках, так и включением в отдельных случаях в цепь переменного тока конденсаторов. При увеличении емкости С потребителя (цепи) и угловой частоты тока емкостное сопротивление уменьшается.

Емкостное сопротивление равно xс = 1/ωС, где хс - емкостное сопротивление в омах, ω - угловая частота, С - емкость потребителя в фарадах.

Треугольник сопротивлений

Рассмотрим цепь, активное сопротивление элементов которой r , индуктивность L и емкость С.

Рис. 1. Цепь переменного тока с резистором, катушкой индуктивности и конденсатором.

Полное сопротивление такой цепи z = √r 2 + (х l - xc) 2) = r 2 + x 2)

Графически это выражение можно изобразить в виде, так называемого, треугольника сопротивлений.

Рис.2. Треугольник сопротивлений

Гипотенуза треугольника сопротивлений изображает полное сопротивление цепи, катеты - активное и реактивное сопротивления.

Если одно из сопротивлений цепи - (активное или реактивное), например, в 10 и более раз меньше другого, то меньшим можно пренебречь, в чем легко убедиться непосредственным расчетом.

Одной из основных проблем в сети переменного напряжения является наличие реактивной мощности. Она расходуется только на потери тепловые. Источником реактивной энергии есть накопители электрической энергии L и С. Я не буду очень глубоко рассматривать этот вопрос. Предлагаю рассмотреть этот вопрос на примере простых элементов цепи — индуктивности и емкости.

Индуктивный элемент L

Индуктивный элемент (рассмотрим на примере катушки индуктивности) представляют собой витки изолированного между собой провода. При протекании тока катушка намагничивается. Если изменить полярность источника, катушка начнет отдавать запасенную энергию обратно, стараясь поддержать величину тока в контуре. Поэтому при протекании через нее переменной составляющей, энергия запасенная при прохождении положительного полупериода, не успеет рассеяться и будет препятствовать прохождению отрицательного полупериода. В результате отрицательному полупериоду придется погасить энергию запасенную катушкой. В итоге напряжение(U), будет опережать ток (І) на какой-то угол φ. Ниже приведен результат моделирования работы на L-R нагрузку L=1*10 -3 Гн, R=0.5 Ом. U ист = 250 В, частота f=50 Гц.

φ – это разница фаз между U и I.

Реактивное сопротивление обозначается буквой X, полное Z, активное R.

Для индуктивности:

Где ω – циклическая частота

L – индуктивность катушки;

Вывод: чем выше индуктивность L или частота, тем больше будет сопротивление катушки переменному току.

Емкостной элемент

Емкостной элемент (рассмотрим на примере конденсатора) представляет собой двухполюсник с переменным или постоянным значением емкости. Конденсатор — накопитель электрических зарядов. Если подключить его к источнику питания, он зарядится. Если к нему приложить источник с переменной составляющей, он будет заряжаться при прохождении через него положительного полупериода. Когда направление полупериода изменится на отрицательное значение, конденсатор начнет перезаряжаться, то есть энергия, которая накопилась в нем, начнет противодействовать перезарядке. В итоге мы получим напряжение на конденсаторе противоположное источнику. В результате І, будет опережать U на какой- то угол φ. Ниже приведен результат моделирования работы на С-R нагрузку С=900*10 — 6 Фа, R=0.5 Ом, U ист = 250 В, частота f=50 Гц.


Рисунок 2. Работа источника на R-C нагрузку

Для емкости:

Где ω – циклическая частота

— частота питающего напряжения, Гц;

С — емкость конденсатора;

Вывод: чем выше емкость С или частота, тем меньше будет сопротивление переменному току.

Сравнение влияния реактивного сопротивления на активную мощность сети

Из рисунков 1 и 2 видно, что сдвиг фаз на рисунках не одинаков. Вывод — чем больше в полном сопротивлении Z будет влияние X L или X C тем больше будет разница фаз U и I.

Угол сдвига между током и напряжением называется φ .

Реактивная мощность однофазная:

Трехфазная:

U ф, I ф — фазные ток и напряжение

Вывод: реактивная мощность – не выполняет полезного действия.

Она «перегоняется» по сети нагревая кабели и увеличивая потери. На крупных промышленных предприятиях это особо ощутимо в силу наличия электроприводов и других крупных потребителей. Этот вопрос очень актуален для энергосбережения и модернизации производства. Поэтому на пром. предприятиях устанавливаются компенсаторы реактивной мощности. Они могут быть разного типа и кроме компенсации выполнять еще и роль фильтров. С помощью компенсаторов стараются сохранить баланс реактивной мощности для минимизации ее влияния на сеть и подогнать угол φ к нулю.

Для необходимо максимально сбалансировать в сети количество (L, C) элементов.

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным , а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида - индуктивные и емкостные .

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току - Z , которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения U L (напряжение на индуктивном сопротивлении) и напряжения U R (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) - схема цепи; б) - сдвиг фаз тока и напряжения; в) - треугольник напряжений; д) - треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов U L и U R . Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор U AB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью . .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C . а) - схема цепи; б) - треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (X L или X C преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

(5)

(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов . а) - параллельное соединение R и L; б) - параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

(8)

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура .

Формула полного сопротивления для этого случая будет:

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

(14)

где L-индуктивность катушки в Гн;

С-емкость конденсатора в Ф;

R-активное сопротивление катушки в Ом.