Понятие ключа в БД, первичные и внешние ключи. Ограничения первичных и внешних ключей Типы первичных ключей

Используются в любой деятельности: в банковской и финансовой отраслях, туристическом бизнесе, складских хозяйствах, на производстве и в обучении. Они представляют собой совокупность таблиц, имеют четкие свойства и подчиняются строгим требованиям. В реляционных БД таблицы называют отношениями.

Что такое первичный ключ в БД

В базе данных первичный ключ таблицы - это один из ее столбцов (Primary key). Разберемся на примере, как это выглядит. Представим простое отношение студентов университета (назовем его "Студенты").

Нам необходимо однозначно определить студента по одному столбцу. Для этого информация в этом столбце для каждой записи должна быть уникальной. Но имеющиеся данные в этом отношении не дают нам однозначно идентифицировать запись, так как на одном курсе и одном факультете могут учиться однофамильцы, тезки и учащиеся с одинаковыми фамилиями и именами. Первичный ключ в базе данных служит для точного определения необходимой строки в отношении. Чаще всего в этом качестве используется числовое поле, автоматически возрастающее с вводом записи (автоинкрементный столбец-идентификатор).

Простой и составной первичный ключ

Primary key может быть простым и составным. Если уникальность записи определяется значением только в одном поле, как описано выше, мы имеем дело с простым ключом. Составной ключ - это первичный ключ базы данных, состоящий из двух и более полей. Рассмотрим следующее отношение клиентов банка.

Ф. И. О. Дата рождения Серия паспорта Номер паспорта
Иванов П.А. 12.05.1996 75 0553009
Сергеев В.Т. 14.07.1958 71 4100654
Краснов Л.В. 22.01.2001 73 1265165

Паспорта людей могут содержать одни и те же серии либо номера, но паспортов с одним и тем же сочетанием серии и номера не существует. Таким образом, поля "Серия паспорта" и "Номер паспорта" станут составным ключом указанного отношения, однозначно идентифицируя человека.

Связи между отношениями

Итак, первичный ключ в базе данных - это один или несколько столбцов таблицы, позволяющий однозначно идентифицировать строку этого отношения. Для чего же он нужен?

Вернемся к первому примеру с отношением "Студенты". В базе данных, кроме этого отношения, хранится и другая информация, например, успеваемость каждого учащегося. Чтобы не повторять всю информацию, что уже содержится в БД, пользуются ключом, ссылаясь на нужную запись. Это выглядит так.

В двух отношениях примера мы видим поле ID. Это первичные ключи в базе данных для этих таблиц. Как видим, в успеваемости содержатся только ссылки на эти поля из других таблиц без необходимости указывать всю информацию из них.

Естественный и суррогатный ключ

Как определяют первичный ключ таблицы базы данных? Два рассмотренных нами примера - "Студенты" и "Клиенты банка" - иллюстрируют понятия естественного и суррогатного ключа. В таблице клиентов банка мы определили ключ, состоящий из полей "Номер" и "Серия паспорта", использовав уже имеющиеся столбцы. Такой ключ называется естественным, для его определения мы не производили никаких изменений и дополнений. В случае с отношением "Студенты" ни одно поле или сочетание полей не давали нам уникальности. Это вынудило нас ввести дополнительное поле с кодом учащегося. Такой ключ называется суррогатным, для него мы добавили еще один служебный столбец в таблицу. Этот столбец не несет никакой полезной информации и служит только для идентификации записей.

Внешний ключ и целостность данных в БД

Все вышеизложенное приводит нас к внешнему ключу (Foreign key) и целостности БД. Foreign key - это поле, ссылающееся на Primary key внешнего отношения. В таблице успеваемости это столбцы "Студент" и "Дисциплина". Их данные отсылают нас к внешним таблицам. То есть поле "Студент" в отношении "Успеваемость" - это Foreign key, а в отношении "Студент" это первичный ключ в базе данных.

Важным принципом построения баз данных является их целостность. И одно из ее правил - целостность по ссылкам. Это значит, что внешний ключ таблицы не может ссылаться на несуществующий Primary key другого отношения. Нельзя удалить из отношения "Студент" запись с кодом 1000 - Иванов Иван, если на нее ссылается запись из таблицы успеваемости. В правильно построенной БД при попытке удаления вы получите ошибку, что это поле используется.

Существуют и другие группы правил целостности, а также другие ограничения баз данных, которые также заслуживают внимания и должны быть учтены разработчиками.

ПРИМЕНЯЕТСЯ К: SQL Server (начиная с 2016)База данных SQL AzureХранилище данных SQL AzureParallel Data Warehouse

Первичные и внешние ключи представляют собой два типа ограничений, которые могут использоваться для обеспечения целостности данных в таблицах SQL Server. Это важные объекты базы данных.

Эта тема описана в следующих разделах.

Ограничения первичного ключа

Ограничения внешнего ключа

Связанные задачи

Обычно в таблице есть столбец или сочетание столбцов, содержащих значения, уникально определяющие каждую строку таблицы. Этот столбец, или столбцы, называются первичным ключом (PK) таблицы и обеспечивает целостность сущности таблицы. Ограничения первичного ключа часто определяются в столбце идентификаторов, поскольку гарантируют уникальность данных.

При задании ограничения первичного ключа для таблицы компонента Компонент Database Engine гарантирует уникальность данных путем автоматического создания уникального индекса для первичных ключевых столбцов. Этот индекс также обеспечивает быстрый доступ к данным при использовании первичного ключа в запросах. Если ограничение первичного ключа задано более чем для одного столбца, то значения могут дублироваться в пределах одного столбца, но каждое сочетание значений всех столбцов в определении ограничения первичного ключа должно быть уникальным.

Как показано на следующем рисунке, столбцы ProductID и VendorID в таблице Purchasing.ProductVendor формируют составное ограничение первичного ключа для данной таблицы. При этом гарантируется, что каждая строка в таблице ProductVendor имеет уникальное сочетание значений ProductID и VendorID . Это предотвращает вставку повторяющихся строк.

    В таблице возможно наличие только одного ограничения по первичному ключу.

    Первичный ключ не может включать больше 16 столбцов, а общая длина ключа не может превышать 900 байт.

    Индекс, формируемый ограничением первичного ключа, не может повлечь за собой выход количества индексов в таблице за пределы в 999 некластеризованных индексов и 1 кластеризованный.

    Если для ограничения первичного ключа не указано, является ли индекс кластеризованным или некластеризованным, то создается кластеризованный индекс, если таковой отсутствует в таблице.

    Все столбцы с ограничением первичного ключа должны быть определены как не допускающие значения NULL. Если допустимость значения NULL не указана, то все столбцы c ограничением первичного ключа устанавливаются как не допускающие значения NULL.

    Если первичный ключ определен на столбце определяемого пользователем типа данных CLR, реализация этого типа должна поддерживать двоичную сортировку.

Внешний ключ (FK) - это столбец или сочетание столбцов, которое применяется для принудительного установления связи между данными в двух таблицах с целью контроля данных, которые могут храниться в таблице внешнего ключа. Если один или несколько столбцов, в которых находится первичный ключ для одной таблицы, упоминается в одном или нескольких столбцах другой таблицы, то в ссылке внешнего ключа создается связь между двумя таблицами. Этот столбец становится внешним ключом во второй таблице.

Например, таблица Sales.SalesOrderHeader связана с таблицей Sales.SalesPerson с помощью внешнего ключа, так как существует логическая связь между заказами на продажу и менеджерами по продажам. Столбец SalesPersonID в таблице Sales.SalesOrderHeader соответствует первичному ключевому столбцу в таблице SalesPerson . Столбец SalesPersonID в таблице Sales.SalesOrderHeader является внешним ключом для таблицы SalesPerson . С помощью установления данной связи по внешнему ключу значение для SalesPersonID не может быть вставлено в таблицу SalesOrderHeader , если оно в настоящий момент не содержится в таблице SalesPerson .

Максимальное количество таблиц и столбцов, на которые может ссылаться таблица в качестве внешних ключей (исходящих ссылок), равно 253. SQL Server 2016 увеличивает ограничение на количество других таблиц и столбцов, которые могут ссылаться на столбцы в одной таблице (входящие ссылки), с 253 до 10 000. (Требуется уровень совместимости не менее 130.) Увеличение имеет следующие ограничения:

    Превышение 253 ссылок на внешние ключи поддерживается только для операций DML DELETE. Операции UPDATE и MERGE не поддерживаются.

    Превышение 253 ссылок на внешние ключи в настоящее время недоступно для индексов columnstore, оптимизированных для памяти таблиц, базы данных Stretch или секционированных таблиц внешнего ключа.

Индексы в ограничениях внешнего ключа

В отличие от ограничений первичного ключа, при создании ограничения внешнего ключа соответствующий индекс автоматически не создается. Тем не менее, часто возникает необходимость создания индекса для внешнего ключа вручную по следующим причинам:

    Столбцы внешнего ключа часто используются в критериях соединения при совместном применении в запросах данных из связанных таблиц. Это реализуется путем сопоставления столбца или столбцов в ограничении внешнего ключа в одной таблице с одним или несколькими столбцами первичного или уникального ключа в другой таблице. Индекс позволяет компоненту Компонент Database Engine быстро находить связанные данные в таблице внешних ключей. Впрочем, создание индекса не является обязательным. Данные из двух связанных таблиц можно комбинировать, даже если между таблицами не определены ограничения первичного ключа или внешнего ключа, но связь по внешнему ключу между двумя таблицами показывает, что эти две таблицы оптимизированы для совместного применения в запросе, где ключи используются в качестве критериев.

    С помощью ограничений внешнего ключа в связанных таблицах проверяются изменения ограничений первичного ключа.

Ссылочная целостность

Главная задача ограничения внешнего ключа состоит в управлении данными, которые могут быть сохранены в таблице внешнего ключа, но это ограничение контролирует также изменение данных в таблице первичного ключа. Например, при удалении строки для менеджера по продажам из таблицы Sales.SalesPerson , идентификатор которого используется в заказах на продажу в таблице Sales.SalesOrderHeader , ссылочная целостность двух таблиц будет нарушена. Заказы на продажу удаленного менеджера в таблице SalesOrderHeader станут недействительными без связи с данными в таблице SalesPerson .

Ограничение внешнего ключа предотвращает возникновение этой ситуации. Ограничение обеспечивает целостность ссылок следующим образом: оно запрещает изменение данных в таблице первичного ключа, если такие изменения сделают недопустимой ссылку в таблице внешнего ключа. Если при попытке удалить строку в таблице первичного ключа или изменить значение этого ключа будет обнаружено, что удаленному или измененному значению первичного ключа соответствует определенное значение в ограничении внешнего ключа в другой таблице, то действие выполнено не будет. Для успешного изменения или удаления строки с ограничением внешнего ключа необходимо сначала удалить данные внешнего ключа в таблице внешнего ключа либо изменить в таблице внешнего ключа данные, которые связывают внешний ключ с данными другого первичного ключа.

Каскадная ссылочная целостность

С помощью каскадных ограничений ссылочной целостности можно определять действия, которые компонент Компонент Database Engine будет предпринимать, когда пользователь попытается удалить или обновить ключ, на который указывают еще существующие внешние ключи. Могут быть определены следующие каскадные действия.

NO ACTION
Компонент Компонент Database Engine формирует ошибку, после чего выполняется откат операции удаления или обновления строки в родительской таблице.

CASCADE
Соответствующие строки обновляются или удаляются из ссылающейся таблицы, если данная строка обновляется или удаляется из родительской таблицы. Значение CASCADE не может быть указано, если столбец типа timestamp является частью внешнего или ссылочного ключа. Действие ON DELETE CASCADE не может быть указано в таблице, для которой определен триггер INSTEAD OF DELETE. Предложение ON UPDATE CASCADE не может быть задано применительно к таблицам, для которых определены триггеры INSTEAD OF UPDATE.

SET NULL
Всем значениям, составляющим внешний ключ, присваивается значение NULL, когда обновляется или удаляется соответствующая строка в родительской таблице. Для выполнения этого ограничения внешние ключевые столбцы должны допускать значения NULL. Не может быть задано применительно к таблицам, для которых определены триггеры INSTEAD OF UPDATE.

SET DEFAULT
Все значения, составляющие внешний ключ, при удалении или обновлении соответствующей строки родительской таблицы устанавливаются в значение по умолчанию. Для выполнения этого ограничения все внешние ключевые столбцы должны иметь определения по умолчанию. Если столбец допускает значения NULL и значение по умолчанию явно не определено, значением столбца по умолчанию становится NULL. Не может быть задано применительно к таблицам, для которых определены триггеры INSTEAD OF UPDATE.

Ключевые слова CASCADE, SET NULL, SET DEFAULT и NO ACTION можно сочетать в таблицах, имеющих взаимные ссылочные связи. Если компонент Компонент Database Engine обнаруживает ключевое слово NO ACTION, оно остановит и произведет откат связанных операций CASCADE, SET NULL и SET DEFAULT. Если инструкция DELETE содержит сочетание ключевых слов CASCADE, SET NULL, SET DEFAULT и NO ACTION, то все операции CASCADE, SET NULL и SET DEFAULT выполняются перед поиском компонентом Компонент Database Engine операции NO ACTION.

Триггеры и каскадные ссылочные действия

Каскадные ссылочные действия запускают триггеры AFTER UPDATE или AFTER DELETE следующим образом:

    Все каскадные ссылочные действия, прямо вызванные исходными инструкциями DELETE или UPDATE, выполняются первыми.

    Если есть какие-либо триггеры AFTER, определенные для измененных таблиц, эти триггеры запускаются после выполнения всех каскадных действий. Эти триггеры запускаются в порядке, обратном каскадным действиям. Если для одной таблицы определены несколько триггеров, они запускаются в случайном порядке, если только не указаны выделенные первый и последний триггеры таблицы. Этот порядок определяется процедурой .

    Если последовательности каскадных действий происходят из таблицы, которая была непосредственной целью действий DELETE или UPDATE, порядок запуска триггеров этими последовательностями действий не определен. Однако одна последовательность действий всегда запускает все свои триггеры до того, как это начнет делать следующая.

    Триггер AFTER таблицы, являвшейся непосредственной целью действий DELETE или UPDATE, запускается вне зависимости от того, были ли изменены хоть какие-нибудь строки. В этом случае ни на какие другие таблицы каскадирование не влияет.

    Если один из предыдущих триггеров выполняет операции DELETE или UPDATE над другими таблицами, эти операции могут вызывать собственные последовательности каскадных действий. Эти вторичные последовательности действий обрабатываются для каждой операции DELETE или UPDATE после выполнения всех триггеров первичных последовательностей действий. Этот процесс может рекурсивно повторяться для последующих операций DELETE или UPDATE.

    Выполнение операций CREATE, ALTER, DELETE или других операций языка DDL внутри триггеров может привести к запуску триггеров DDL. Это может привести к дальнейшим операциям DELETE или UPDATE, которые начнут дополнительные последовательности каскадных действий и запустят свои триггеры.

    Если в любой конкретной последовательности каскадных ссылочных действий произойдет ошибка, в этой последовательности не будут запущены никакие триггеры AFTER, а для операций DELETE или UPDATE, создаваемых этой последовательностью, будет выполнен откат.

    У таблицы, для которой определен триггер INSTEAD OF, может также быть предложение REFERENCES, указывающее конкретное каскадное действие. Однако триггер AFTER целевой таблицы каскадного действия может выполнить инструкцию INSERT, UPDATE или DELETE для другой таблицы или представления, которое запустит триггер INSTEAD OF для этого объекта.

В следующей таблице перечислены общие задачи, связанные с ограничениями первичного ключа и внешнего ключа.

На Рисунке представлена таблица (отношение степени 5), содержащая некоторые сведения о работниках гипотетического предприятия. Строки таблицы соответствуют кортежам. Каждая строка фактически представляет собой описание одного объекта реального мира (в данном случае работника), характеристики которого содержатся в столбцах. Реляционные отношения соответствуют наборам сущностей, а кортежи - сущностям. Столбцы в таблице, представляющей реляционное отношение, называют атрибутами .

Каждый атрибут определен на домене, поэтому домен можно рассматривать как множество допустимых значений данного атрибута. Несколько атрибутов одного отношения и даже атрибуты разных отношений могут быть определены на одном и том же домене.

Атрибут, значение которого однозначно идентифицирует кортежи, называется ключевым (или просто ключом ). Ключом является атрибут "Табельный номер", поскольку его значение уникально для каждого работника предприятия. Если кортежи идентифицируются только сцеплением значений нескольких атрибутов, то говорят, что отношение имеет составной ключ.

Первичный ключ - в реляционной модели данных один из потенциальных ключей отношения, выбранный в качестве основного ключа (или ключа по умолчанию).

Отношение может содержать несколько ключей. Всегда один из ключей объявляется первичным , его значения не могут обновляться. Все остальные ключи отношения называются возможными ключами .

С точки зрения теории все потенциальные (возможные) ключи отношения эквивалентны, то есть обладают одинаковыми свойствами уникальности и минимальности. Однако в качестве первичного обычно выбирается тот из потенциальных ключей, который наиболее удобен для тех или иных практических целей, например для создания внешних ключей в других отношениях либо для создания кластерного индекса. Поэтому в качестве первичного ключа как правило выбирают тот, который имеет наименьший размер (физического хранения) и/или включает наименьшее количество атрибутов.

Если первичный ключ состоит из единственного атрибута, его называют простым ключом .

Если первичный ключ состоит из двух и более атрибутов, его называют составным ключом . Так, имя, фамилия, отчество, номер паспорта, серия паспорта не могут быть первичными ключами по отдельности, так как могут оказаться одинаковыми у двух и более людей. Но не бывает двух личных документов одного типа с одинаковыми серией и номером. Поэтому в отношении, содержащем данные о людях, первичным ключом может быть подмножество атрибутов, состоящее из типа личного документа, его серии и номера.



В отличие от иерархической и сетевой моделей данных в реляционной отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей.

Атрибуты, представляющие собой копии ключей других отношений, называются внешними ключами .

Например, связь между отношениями ОТДЕЛ и СОТРУДНИК создается путем копирования первичного ключа "Номер_отдела" из первого отношения во второе. Таким образом, для того, чтобы получить список работников данного подразделения, необходимо: 1) Из таблицы ОТДЕЛ установить значение атрибута "Номер_отдела" , соответствующее данному "Наименованию_отдела". 2) выбрать из таблицы СОТРУДНИК все записи, значение атрибута "Номер_отдела" которых равно полученному на предыдушем шаге. Для того, чтобы узнать в каком отделе работает сотрудник, нужно выполнить обратную операцию: 1) Определяем "Номер_отдела" из таблицы СОТРУДНИК. 2) По полученному значению находим запись в таблице ОТДЕЛ.


18. Нормализация в реляционных БД, понятие нормальной формы при проектировании баз данных.

Нормальная форма - свойство отношения в реляционной модели данных, характеризующее его с точки зрения избыточности, которая потенциально может привести к логически ошибочным результатам выборки или изменения данных. Нормальная форма определяется как совокупность требований, которым должно удовлетворять отношение.

Процесс преобразования базы данных к виду, отвечающему нормальным формам, называется нормализацией . Нормализация предназначена для приведения структуры базы данных к виду, обеспечивающему минимальную избыточность, то есть нормализация не имеет целью уменьшение или увеличение производительности работы или же уменьшение или увеличение объёма БД. Конечной целью нормализации является уменьшение потенциальной противоречивости хранимой в БД информации.



Устранение избыточности производится, как правило, за счёт декомпозиции отношений таким образом, чтобы в каждом отношении хранились только первичные факты (то есть факты, не выводимые из других хранимых фактов).

Функциональные зависимости.

Реляционная база данных содержит как структурную, так и семантическую информацию. Структура базы данных определяется числом и видом включенных в нее отношений, и связями типа "один ко многим", существующими между кортежами этих отношений. Семантическая часть описывает множество функциональных зависимостей, существующих между атрибутами этих отношений. Дадим определение функциональной зависимости.

19. 1НФ: Основные определения и правила преобразования.

Для обсуждения первой нормальной формы необходимо дать два определения:

Простой атрибут - атрибут, значения которого атомарны (неделимы).

Сложный атрибут - получается соединением нескольких атомарных атрибутов, которые могут быть определены на одном или разных доменах (его также называют вектор или агрегат данных).

Определение первой нормальной формы:

отношение находится в 1NF если значения всех его атрибутов атомарны. . В противном случае это вообще не таблица и такие атрибуты необходимо декомпозировать.

Рассмотрим пример:

В базе данных отдела кадров предприятия необходимо хранить сведения о служащих, которые можно попытаться представить в отношении

СЛУЖАЩИЙ(НОМЕР_СЛУЖАЩЕГО, ИМЯ, ДАТА_РОЖДЕНИЯ, ИСТОРИЯ_РАБОТЫ, ДЕТИ).

Из внимательного рассмотрения этого отношения следует, что атрибуты "история_работы" и "дети" являются сложными, более того, атрибут "история_работы" включает еще один сложный атрибут "история_зарплаты".
Данные агрегаты выглядят следующим образом:

 ИСТОРИЯ_РАБОТЫ (ДАТА_ПРИЕМА, НАЗВАНИЕ, ИСТОРИЯ_ЗАРПЛАТЫ),

 ИСТОРИЯ_ЗАРПЛАТЫ (ДАТА_НАЗНАЧЕНИЯ, ЗАРПЛАТА),

 ДЕТИ (ИМЯ_РЕБЕНКА, ГОД_РОЖДЕНИЯ).

Их связь представлена на рис. 3.3.

Рис.3.3. Исходное отношение.

Для приведения исходного отношения СЛУЖАЩИЙ к первой нормальной форме необходимо декомпозировать его на четыре отношения, так как это показано на следующем рисунке:

Рис.3.4. Нормализованное множество отношений.

Здесь первичный ключ каждого отношения выделен синей рамкой, названия внешних ключей набраны шрифтом синего цвета. Напомним, что именно внешние ключи служат для представления функциональных зависимостей, существующих в исходном отношении. Эти функциональные зависимости обозначены линиями со стрелками.

Алгоритм нормализации описан Е.Ф.Коддом следующим образом:

  • Начиная с отношения, находящегося на верху дерева (рис. 3.3.), берется его первичный ключ, и каждое непосредственно подчиненное отношение расширяется путем вставки домена или комбинации доменов этого первичного ключа.
  • Первичный Ключ каждого расширенного таким образом отношения состоит из Первичного Ключа, который был у этого отношения до расширения и добавленного Первичного Ключа родительского отношения.
  • После этого из родительского отношения вычеркиваются все непростые домены, удаляется верхний узел дерева, и эта же процедура повторяется для каждого из оставшихся поддеревьев.

20. 2НФ: Основные определения и правила преобразования.

Очень часто первичный ключ отношения включает несколько атрибутов (в таком случае его называют составным ) - см., например, отношение ДЕТИ, показанное на рис. 3.4 вопрос 19. При этом вводится понятие полной функциональной зависимости .

Определение:

неключевой атрибут функционально полно зависит от составного ключа если он функционально зависит от всего ключа в целом, но не находится в функциональной зависимости от какого-либо из входящих в него атрибутов.

Пример:

Пусть имеется отношение ПОСТАВКИ (N_ПОСТАВЩИКА, ТОВАР, ЦЕНА).
Поставщик может поставлять различные товары, а один и тот же товар может поставляться разными поставщиками. Тогда ключ отношения - "N_поставщика + товар" . Пусть все поставщики поставляют товар по одной и той же цене. Тогда имеем следующие функциональные зависимости:

  • N_поставщика, товар -> цена
  • товар -> цена

Неполная функциональная зависимость атрибута "цена" от ключа приводит к следующей аномалии: при изменении цены товара необходим полный просмотр отношения для того, чтобы изменить все записи о его поставщиках. Данная аномалия является следствием того факта, что в одной структуре данных объединены два семантических факта. Следующее разложение дает отношения во 2НФ:

  • ПОСТАВКИ (N_ПОСТАВЩИКА, ТОВАР)
  • ЦЕНА_ТОВАРА (ТОВАР, ЦЕНА)

Таким образом, можно дать

Определение второй нормальной формы: Отношение находится во 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от ключа.

21. 3НФ: Основные определения и правила преобразования.

Перед обсуждением третьей нормальной формы необходимо ввести понятие: транзитивная функциональная зависимость .

Определение:

Пусть X, Y, Z - три атрибута некоторого отношения. При этом X --> Y и Y --> Z, но обратное соответствие отсутствует, т.е. Z -/-> Y и Y -/-> X. Тогда Z транзитивно зависит от X.
Пусть имеется отношение ХРАНЕНИЕ (ФИРМА , СКЛАД, ОБЪЕМ), которое содержит информацию о фирмах, получающих товары со складов, и объемах этих складов. Ключевой атрибут - "фирма" . Если каждая фирма может получать товар только с одного склада, то в данном отношении имеются следующие функциональные зависимости:

  • фирма -> склад
  • склад -> объем

При этом возникают аномалии:

  • если в данный момент ни одна фирма не получает товар со склада, то в базу данных нельзя ввести данные о его объеме (т.к. не определен ключевой атрибут)
  • если объем склада изменяется, необходим просмотр всего отношения и изменение картежей для всех фирм, связанных с данным складом.

Для устранения этих аномалий необходимо декомпозировать исходное отношение на два:

  • ХРАНЕНИЕ (ФИРМА , СКЛАД)
  • ОБЪЕМ_СКЛАДА (СКЛАД , ОБЪЕМ)

Определение третьей нормальной формы:

Отношение находится в 3НФ, если оно находится во 2НФ и каждый не ключевой атрибут не транзитивно зависит от первичного ключа.

Последнее обновление: 02.07.2017

Базы данных могут содержать таблицы, которые связаны между собой различными связями. Связь (relationship) представляет ассоциацию между сущностями разных типов.

При выделении связи выделяют главную или родительскую таблицу (primary key table / master table) и зависимую, дочернюю таблицу (foreign key table / child table). Дочерняя таблица зависит от родительской.

Для организации связи используются внешние ключи. Внешний ключ представляет один или несколько столбцов из одной таблицы, который одновременно является потенциальным ключом из другой таблицы. Внешний ключ необязательно должен соответствовать первичному ключу из главной таблицы. Хотя, как правило, внешний ключ из зависимой таблицы указывает на первичный ключ из главной таблицы.

Связи между таблицами бывают следующих типов:

    Один к одному (One to one)

    Один к многим (One to many)

    Многие ко многим (Many to many)

Связь один к одному

Данный тип связей встречает не часто. В этом случае объекту одной сущности можно сопоставить только один объект другой сущности. Например, на некоторых сайтах пользователь может иметь только один блог. То есть возникает отношение один пользователь - один блог.

Нередко этот тип связей предполагает разбиение одной большой таблицы на несколько маленьких. Основная родительская таблица в этом случае продолжает содержать часто используемые данные, а дочерняя зависимая таблица обычно хранит данные, которые используются реже.

В этом отношении первичный ключ зависимой таблицы в то же время является внешним ключом, который ссылается на первичный ключ из главной таблицы.

Например, таблица Users представляет пользователей и имеет следующие столбцы:

    UserId (идентификатор, первичный ключ)

    Name (имя пользователя)

И таблица Blogs представляет блоги пользователей и имеет следующие столбцы:

    BlogId (идентификатор, первичный и внешний ключ)

    Name (название блога)

В этом случае столбец BlogId будет хранить значение из столбца UserId из таблицы пользователей. То есть столбец BlogId будет выступать одновременно первичным и внешним ключом.

Связь один ко многим

Это наиболее часто встречаемый тип связей. В этом типе связей несколько строк из дочерний таблицы зависят от одной строки в родительской таблице. Например, в одном блоге может быть несколько статей. В этом случае таблица блогов является родительской, а таблица статей - дочерней. То есть один блог - много статей. Или другой пример, в футбольной команде может играть несколько футболистов. И в то же время один футболист одновременно может играть только в одной команде. То есть одна команда - много футболистов.

К примеру, пусть будет таблица Articles, которая представляет статьи блога и которая имеет следующие столбцы:

    ArticleId (идентификатор, первичный ключ)

    BlogId (внешний ключ)

    Title (название статьи)

    Text (текст статьи)

В этом случае столбец BlogId из таблицы статей будет хранить значение из столбца BlogId из таблицы блогов.

Связь многие ко многим

При этом типе связей одна строка из таблицы А может быть связана с множеством строк из таблицы В. В свою очередь одна строка из таблицы В может быть связана с множеством строк из таблицы А. Типичный пример - студенты и курсы: один студент может посещать несколько курсов, и соответственно на один курс могут записаться несколько студентов.

Другой пример - статьи и теги: для одной статьи можно определить несколько тегов, а один тег может быть определен для нескольких статей.

Но в SQL Server на уровне базы данных мы не можем установить прямую связь многие ко многим между двумя таблицами. Это делается посредством вспомогательной промежуточной таблицы. Иногда данные из этой промежуточной таблицы представляют отдельную сущность.

Например, в случае со статьями и тегами пусть будет таблица Tags, которая имеет два столбца:

    TagId (идентификатор, первичный ключ)

    Text (текст тега)

Также пусть будет промежуточная таблица ArticleTags со следующими полями:

    TagId (идентификатор, первичный и внешний ключ)

    ArticleIdId (идентификатор, первичный и внешний ключ)

Технически мы получим две связи один-ко-многим. Столбец TagId из таблицы ArticleTags будет ссылаться на столбец TagId из таблицы Tags. А столбец ArticleId из таблицы ArticleTags будет ссылаться на столбец ArticleId из таблицы Articles. То есть столбцы TagId и ArticleId в таблице ArticleTags представляют составной первичный ключ и одновременно являются внешними ключами для связи с таблицами Articles и Tags.

Ссылочная целостность данных

При изменении первичных и внешних ключей следует соблюдать такой аспект как ссылочная целостность данных (referential integrity). Ее основная идея состоит в том, чтобы две таблице в базе данных, которые хранят одни и те же данные, поддерживали их согласованность. Целостность данных представляет правильно выстроенные отношения между таблицами с корректной установкой ссылок между ними. В каких случаях целостность данных может нарушаться:

    Аномалия удаления (deletion anomaly). Возникает при удалении строки из главной таблицы. В этом случае внешний ключ из зависимой таблицы продолжает ссылаться на удаленную строку из главной таблицы

    Аномалия вставки (insertion anomaly). Возникает при вставке строки в зависимую таблицу. В этом случае внешний ключ из зависимой таблицы не соответствует первичному ключу ни одной из строк из главной таблицы.

    Аномалии обновления (update anomaly). При подобной аномалии несколько строк одной таблицы могут содержать данные, которые принадлежат одному и тому же объекту. При изменении данных в одной строке они могу прийти в противоречие с данными из другой строки.

Аномалия удаления

Для решения аномалии удаления для внешнего ключа следует устанавливать одно из двух ограничений:

    Если строка из зависимой таблицы обязательно требует наличия строки из главной таблицы, то для внешнего ключа устанавливается каскадное удаление. То есть при удалении строки из главной таблицы происходит удаление связанной строки (строк) из зависимой таблицы.

    Если строка из зависимой таблицы допускает отсутствие связи со строкой из главной таблицы (то есть такая связь необязательна), то для внешнего ключа при удалении связанной строки из главной таблицы задается установка значения NULL. При этом столбец внешнего ключа должен допускать значение NULL.

Аномалия вставки

Для решения аномалии вставки при добавлении в зависимую таблицу данных столбец, который представляет внешний ключ, должен допускать значение NULL. И таким образом, если добавляемый объект не имеет связи с главной таблицей, то в столбце внешнего ключа будет стоять значение NULL.

Аномалии обновления

Для решения проблемы аномалии обновления применяется нормализация, которая будет рассмотрена далее.

В этой статье мы попробуем рассмотреть все, что касается ключей в SQL: для чего нужны, создание, ограничения ключей. В общем: будет скучно 😉

План на сегодня такой:

В теории реляционных баз данных — ключи это некие сущности, созданы для установления определенных ограничений, которые поддерживают целостность и доступность данных в таблицах баз данных.

Если говорить простыми словами, то ключи в sql созданы для того, чтобы указать дополнительную функциональность столбца. Будь то уникальность или то, что столбец ссылается на другую таблицу (внешний ключ).

Первичный ключ

Столбец, который в базе данных должен быть уникальным помечают первичным ключом. Первичный ключ или primary key означает, что в таблице значение колонки primary key не может повторяться. Таким образом данный ключ позволяет однозначно идентифицировать запись в таблице не боясь при этом, что значение столбца повториться. Сразу пример: допустим у Вас есть таблица пользователей. В данной таблице есть поля: ФИО, год рождения, телефон. Как идентифицировать пользователя? Таким параметрам как ФИО и телефон доверять нельзя. Ведь у нас может быть несколько пользователей не только с одинаковой фамилией, но и с именем. Телефон может меняться со временем и пользователь с номером телефона может оказаться не тем кто у нас в базе данных.

Вот для этого и придумали первичный ключ. Один раз присвоили уникальный идентификатор и все. В mySql на примере которой мы выполняем все примеры из поле AUTO_INCREMENT нельзя задать если не указать, что это первичный ключ.

Думаю, что не стоит упоминать, что поле помеченное как первичный ключ не может быть пустым при создании записи.

Внешний ключ (foreign key )

Есть еще внешний ключ (foreign key ). Его еще называют ссылочным. Он нужен для связывания таблиц между собой.

Если посмотреть на картинку выше, то внешним ключем будет поле поставщик в таблице обувь. Как правило, при создании таблицы задают колонку уникальных целочисленных значений. Как мы это делали когда создавали таблицу supplier.

Колонка supplier_id будет уникальна для каждой записи. Ее значение и будет выступать на мести колонки поставщик в таблице обувь. Предлагаю сразу и рассмотреть на примере как создается внешний ключ.

Создание внешнего ключа

create table shoes(shoes_id int auto_increment primary key, title text, size int, price float, count int, type varchar(30), supplier int, foreign key (supplier) references supplier (supplier_id));

Как видно на примере выше, синтаксис по созданию внешнего ключа довольно прост. Нужно в таблицу добавить поле, а после объявить это поле как внешний ключ и указать, куда он будет ссылаться. В данном случае поле supplier будет ссылаться на поле supplier_id в таблице supplier.

Составной ключ (composite key)

Что касается составного ключа — это несколько первичных ключей в таблице. Таким образом, создав composite key , уникальность записи будет проверяться по полям, которые объединенные в этот ключ.

Бывают ситуации, когда при вставке в таблицу нужно проверять запись на уникальность сразу по нескольким полям. Вот для этого и придуман составной ключ. Для примера я создам простую таблицу с composite key , чтобы показать синтаксис:

Create table test(field_1 int, field_2 text, field_3 bigint, primary key (field_1, field_3));

В примере выше два поля объединенные в составной ключ и в таблице не будет записей с этими одинаковыми полями.

Это все, что касается ключей в SQL. Это небольшое пособие — подготовка к статье где мы подробно рассмотрим как объединять таблицы, чтобы они составляли единую базу данных.