Основные топологии локальных сетей. Типы локальных сетей и их устройство. Компьютерные сети: виды, функции, топология Существующие типы локальных сетей

Сегодняшняя статья открывает новую рубрику на блоге, которая будет называться “Сети ”. В данной рубрике будет освещаться широчайший круг вопросов, касающихся компьютерных сетей . Первые статьи рубрики будут посвящены разъяснению некоторых базовых понятий, с которыми вы столкнетесь при работе с сетью. А сегодня мы поговорим о том, какие компоненты потребуются для создания сети и какие существуют виды сетей .

Компьютерная сеть – это совокупность компьютерного и сетевого оборудования, соединенного с помощью каналов связи в единую систему. Для создания компьютерной сети нам потребуются следующие компоненты:

  • компьютеры, имеющие возможности для подключения к сети (например, сетевая карта, которая есть в каждом современном ПК);
  • передающая среда или каналы связи (кабельные, спутниковые, телефонные, волоконно-оптические и радиоканалы);
  • сетевое оборудование (например, коммутатор или роутер);
  • сетевое программное обеспечение (как правило, входит в состав операционной системы или поставляется вместе с сетевым оборудованием).

Компьютерные сети принято подразделять на два основных вида: глобальные и локальные.

Локальные сети (Local Area Network – LAN ) обладают замкнутой инфраструктурой до выхода на поставщиков услуг интернета. Термин “локальная сеть” может описывать и маленькую офисную сеть, и сеть большого завода, занимающего несколько гектаров. Применительно к организациям, предприятиям, фирмам используется термин корпоративная сеть – локальная сеть отдельной организации (юридического лица) независимо от занимаемой ею территории.
Корпоративные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей (например, сотрудникам компании). Глобальные сети ориентированы на обслуживание любых пользователей.

Глобальная сеть (Wide Area Network – WAN ) охватывает большие географические регионы и состоит из множества локальных сетей. С глобальной сетью, которая состоит из нескольких тысяч сетей и компьютеров, знакомы все – это Интернет.

Системному администратору приходится иметь дело с локальными (корпоративными) сетями. Обычный пользовательский компьютер, подключенный к локальной сети, называется рабочей станцией . Компьютер, предоставляющий свои ресурсы для общего использования другим компьютерам сети, называется сервером ; а компьютер, обращающийся к совместно используемым ресурсам на сервере – клиентом .

Существуют различные виды серверов : файловые (для хранения общих файлов), серверы баз данных, серверы приложений (обеспечивающие удаленную работу программ на клиентах), web-серверы (для хранения web-контента) и другие.

Загрузка сети характеризуется параметром, называемым трафиком. Трафик – это поток сообщений в сети передачи данных. Под ним понимают количественное измерение числа проходящих по сети блоков данных и их длины, выраженное в битах в секунду. Например, скорость передачи данных в современных локальных сетях может быть 100Мбит/с или 1Гбит/с

В настоящее время в мире насчитывается огромное количество всевозможного сетевого и компьютерного оборудования, позволяющего организовать самые различные компьютерные сети. Все многообразие компьютерных сетей можно разделить на несколько видов по различным признакам:

По территории:

  • локальные – охватывают небольшие территории и располагаются внутри отдельных офисов, банков, корпораций, домов;
  • региональные – образуются путем объединения локальных сетей на отдельных территориях;
  • глобальные (интернет).

По способу связи компьютеров:

  • проводные (компьютеры соединяются посредством кабеля);
  • беспроводные (компьютеры обмениваются информацией посредством радиоволн. например, по технологии WI-FI или Bluetooth).

По способу управления:

  • с централизованным управлением – для управления процессом обмена данных в сети выделяется одна или несколько машин (серверов);
  • децентрализованные сети – не содержат в своем составе выделенных серверов, функции управления сетью передаются по очереди от одного компьютера другому.

По составу вычислительных средств:

  • однородные – объединяют однородные вычислительные средства (компьютеры);
  • неоднородные – объединяют различные вычислительные средства (например: ПК, торговые терминалы, веб-камеры и сетевое хранилище данных).

По типам среды передачи сети разделяются на оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне, через спутниковый канал и т.д.

Вы можете встретить и другие классификации компьютерных сетей. Как правило, системному администратору приходится иметь дело с локальными проводными сетями с централизованным, либо децентрализованным управлением.

Модель взаимодействия открытых систем (Open Systems Interconnection reference model - OSI) описывает, каким образом информация от приложения в одном компьютере перемещается через сетевую среду к приложению в другом компьютере. Модель соединения открытых систем - концептуальная модель, составленная из семи уровней, каждый из которых специфицирует определенную группу функций сети. Модель была разработана Международной организацией стандартизации (International Organisation for Standardisation - ISO) в 1984 году и теперь считается базовой архитектурной моделью межмашинной связи. Модель ВОС делит задачи, связанные с перемещением информации между сетевыми компьютерами на семь меньших, более управляемых групп задач.

Таблица структуры уровней модели ВОС

Задача или группа задач помещается на один из семи уровней соединения открытых систем. Каждый уровень является разумно автономным, так, чтобы задачи, назначенные на каждый уровень, могли быть осуществлены независимо. Это дает возможность изменять процессы и конструкции, размещенные на одном из уровней, не затрагивая другие.

Семь уровней модели могут быть разделены на две категории: верхние и нижние. Верхние уровни модели открытых систем имеют дело с прикладными проблемами и полностью осуществляются только в программном обеспечении. Самый высокий уровень (приложений) наиболее близок к конечному пользователю.

Нижние уровни моделируют проблемы транспортировки данных. Физический уровень и уровень передачи данных реализуются в аппаратных средствах и программном обеспечении. Самый нижний, физический уровень, наиболее близок к физической сетевой среде (кабели, например) и ответственен за перемещение информации относительно среды.

Топология локальной сети

Топология локальной сети определяет способ, которым организованы сетевые устройства. Существуют четыре основные топологии локальных сетей:

  • шинная (магистральная) топология - линейная архитектура локальной сети, в которой узлы соединены с шиной и могут устанавливать связь со всеми другими узлами на этом сегменте кабеля. Обрыв где-нибудь в магистрали (кабеле) означает полный выход сегмента из строя, пока связь не восстановлена;
  • кольцевая топология - архитектура локальной сети, в которой все устройства связаны друг с другом петлей, так чтобы каждое устройство было связано непосредственно с двумя соседними. Данная топология используется в сетях Token Ring/IEEE 802.5 и FDDI;
  • звездообразная топология - архитектура, в которой оконечные узлы сети связаны с общим центральным концентратором или переключателем выделенными связями. Сети 1OBaseT Ethernet используют звездообразную топологию. Основное преимущество этого типа сети - надежность: если один из «двухточечных» сегментов имеет разрыв, это затронет только узлы на этой связи; другие пользователи на сети продолжают работать, как будто этот сегмент не существует;
  • топология «дерева» - архитектура локальной сети, которая является идентичной шинной топологии, за исключением того, что в этом случае возможны ветви с множественными узлами.
  • а - магистраль (шина);
  • б - кольцо;
  • в - звезда;
  • г - дерево.

Из трех наиболее распространенных типов локальной сети шинную топологию используют сети стандартный Ethernet/IEEE 802.3, кольцевую - Fibre Distributed Data Interface (FDDI) и Token Ring/IEEE 802.5.

FDDI

Оптоволоконный интерфейс к распределенным данным (Fibre Distributed Data Interface - FDDI) был разработан комитетом стандартов Американского национального института стандартов (ANSI) в середине 1980-х годов, когда высокоскоростные АРМ проектировщиков начали перегружать полосу пропускания существующих локальных сетей, основанных на Ethernet и Token Ring. Стандарт определяет двойную кольцевую локальную сеть с эстафетным доступом на 100 Мбит/с, использующую волоконно-оптический кабель. FDDI занял свою нишу как надежная, высокоскоростная магистраль для сетей критического назначения с высоким потоком данных.

FDDI использует двойную кольцевую топологию, которая включает два противовращающихся кольца. В процессе нормального функционирования первичное кольцо используется для передачи данных, а вторичное кольцо простаивает. Наличие двойных колец должно обеспечить высокую надежность и устойчивость к ошибкам.

Станция в сети присоединяется к обоим из этих колец и должна иметь не менее двух портов - «А», где первичное кольцо входит и вторичное кольцо выходит, и «В», где вторичное кольцо входит и первичное выходит. Предусмотрены также порты «М», которые являются соединениями для присоединяемых станций, и станция с не менее чем одним М-портом является концентратором.

Последовательность, в которой станции получают доступ к среде, предопределена протоколом сети. Станция генерирует специальную сигнальную последовательность, названную маркером (Token), которая определяет право передачи. Этот маркер непрерывно передают вокруг сети от одного узла к другому. Когда станция собирается послать сообщение, она задерживает маркер, формирует информацию в определенный пакет (фрейм, кадр) FDDI, затем отпускает маркер. Заголовок такого кадра включает адрес станции(й), которая является его получателем. Каждая станция читает кадр, поскольку он передается вдоль кольца, чтобы определить, является ли она адресатом. Если это так, она извлекает данные, передавая кадр далее по кольцу. Когда кадр возвращается к станции возникновения, он ликвидируется. Схема эстафетного управления доступом позволяет всем станциям совместно использовать сетевую полосу пропускания в упорядоченном и эффективном режиме.

Token Ring (Эстафетное кольцо)

Этот стандарт предложен фирмой IBM в 1984 году В качестве передающей среды применяется витая пара или оптоволоконные кабели. Скорость передачи данных - 4 или 16 Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод маркерного кольца (Token Ring), который также разработан фирмой IBM и рассчитан на кольцевую топологию сети.

Основные положения этого метода:

  • компьютеры подключаются в сеть по топологии «звезда» или «кольцо»;
  • все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер). Маркер передается по кольцу, минуя каждую рабочую станцию в сети. Рабочая станция, располагающая информацией, которую необходимо передать, может добавить к маркеру кадр данных. В противном случае (при отсутствии данных) она просто передает маркер следующей станции;
  • в любой момент времени таким правом обладает только одна станция сети.

В IBM Token Ring используются три основных типа пакетов:

  • пакет управление/данные (Data/Command Frame). С помощью такого пакета выполняется передача данных или команд управления работой сети;
  • маркер (Token). Станция может начать передачу данных только после получения такого пакета; в одном кольце может быть только один маркер и соответственно только одна станция с правом передачи данных;
  • пакет сброса (Abort). Посылка такого пакета вызывает прекращение любых передач.

Ethernet

Спецификации Ethernet начали разрабатываться Xerox Corporation в середине 1970-х годов, и в 1979 году Digital Equipment Corporation (DEC) и Intel также присоединились к этим работам.

Первая спецификация, выпущенная этими тремя компаниями в 1980 году, называлась «Ethernet Blue Book» и известна под именем «DIX standard» (от инициалов компаний-разработчиков). Это была система на 10 Мбит/с, которая использовала большой коаксиальный кабель в качестве магистрали, прокладываемой внутри здания с меньшими коаксиальными кабелями, отходящими через интервалы около 2.5 м, чтобы соединяться с рабочими станциями. Линия на большом коаксиальном кабеле (обычно желтого цвета) стала известной как «толстый Ethernet» или 10Base-5, где:

  • 10 характеризует скорость (10 Мбит/с);
  • Base означает, что используется система с полосой немодулированных частот;
  • 5 - краткое обозначение для максимальной длины кабеля системы (500 м).

IEEE выпустила официальный стандарт Ethernet в 1983 году, который был назван IEEE 802.3 по наименованию рабочей группы, ответственной за его развитие, а в 1985 году была выпущена версия 2 (IEEE 802.3а). Эта версия известна как «тонкий Ethernet» или 10Base-2, в этом случае максимальная длина 185 м (хотя 2 означает 200 м).

Протокол коллективного доступа Ethernet - множественный доступ с опросом носителя и разрешением конфликтов (Carrier Sense Multiple Access with Collision Detection - CSMA/CD) и протокол управления доступом к носителю (Media Access Control - MAC) определяют правила пользования для общедоступной сети. Название самого протокола поясняет, как собственно фактически работает процесс управления трафика. Устройства, подключенные к сети проверяют или обнаруживают наличие носителя (проводной связи) перед началом передачи. Если сеть занята, устройство ожидает ее освобождения. Коллективный доступ относится к факту, что несколько устройств могут совместно использовать одну и ту же сетевую среду. Если случайно два устройства попытаются передать данные точно в одно и то же время и возникает коллизия, то механизм разрешения коллизий заставляет оба устройства перейти в ожидание на случайный интервал времени, а затем повторить передачу.

Популярность Ethernet росла в течение 1990-х годов, пока технология не стала почти вездесущей. К концу 1997 года было оценено, что более 85 % всех установленных сетевых подключений имели тип Ethernet, а в следующем году технология составляла 86 % поставок сетевого оборудования. Несколько факторов внесли вклад в успех Ethernet, не в последнюю очередь его масштабируемость.

Быстрый Ethernet

Быстрый Ethernet был официально принят летом 1995 года, спустя два года после того, как группа ведущих сетевых компаний сформировала Союз Быстрого Ethernet (Fast Ethernet Alliance), чтобы разработать стандарт. Быстрый Ethernet (также называемый 100Base-T) сохраняет тот же самый протокол CSMA/CD, кроме того, использование кабеля Категории 5 (смотри таблицу 7.9) обеспечивает более высокую полосу пропускания и вводит новые возможности типа полнодуплексной передачи и автоматического установления связи.

Гигабит-Ethernet

Следующий шаг в развитии Ethernet управлялся Союзом гигабит-Ethernet (Gigabit Ethernet Alliance), образованным в 1996 году Утверждение ряда стандартов гигабит-Ethernet зыло закончено летом 1999 года, и они определяют физический уровень использования комплекса проверенных технологий, включая лервоначальные спецификации Ethernet и Спецификацию волоконного канала ANSI ХЗТ11:

  • 1000Base-X - стандарт использует на физическом уровне оптоволоконные каналы и определяет технологию взаимосвязи для подключения рабочих станции, суперЭВМ, накопителей информации и периферийные устройства, используя волоконно-оптические и проводные (экранированная витая пара) типы носителей;
  • 1000Base-T - стандарт для связи с использованием неэкранированной витой пары.

Гигабит-Ethernet является преемственной по отношению к 10 Мбит/с и 100 Мбит/с предшественникам, позволяя прямое перемещение к работе с сетями более высокой скорости. Все три скорости Ethernet используют один и тот же формат кадра передачи данных IEEE 802.3, полнодуплексные операции и методы управления потоком данных. В полудуплексном режиме гигабит-Ethernet использует тот же самый метод множественного доступа с опросом несущей и разрешением конфликтов.

Использование одного и того же формата кадра (фрейма) переменной длины (от 64 до 1514 байт) IEEE 802.3 как в Ethernet, так и быстром Ethernet является ключом к совместимости, к тому, что существующие устройства Ethernet малого быстродействия могут быть связаны с устройствами гигабит-Ethernet, используя сетевые коммутаторы или маршрутизаторы, чтобы приспособить одну физическую скорость линии к другой.

Одноранговые и клиент серверные сети

В одноранговой сетевой архитектуре (peer-to-peer) каждый компьютер (рабочая станция) имеет эквивалентные возможности и обязанности. Нет разделения функций, и компьютеры просто соединяются друг с другом в рабочей группе, чтобы совместно использовать файлы, принтеры и доступ к . Это является обычным для рабочих групп, включающих 10 или менее компьютеров, делая это обычным во многих системах малого офиса, где каждый персональный компьютер действует как независимая рабочая станция, которая сохраняет данные на собственном НЖМД, но может совместно использовать данные со всех других персональных компьютеров на сети.

Программное обеспечение для одноранговых сетей включено в современные операционные системы настольных персональных компьютеров типа Windows и MAC OS (Макинтош) без необходимости приобретения специального сетевого программного обеспечения.

Клиент серверная сетевая архитектура стала популярной в конце 1980-х и в начале 1990-х годов, так как многие приложения были перенесены от хост компьютеров и универсальных ЭВМ к сетям персональных компьютеров.

Разработка приложений для распределенной вычислительной среды требовала, чтобы они фактически были разделены на две части: клиент (передняя сторона) и сервер (задняя сторона). Сетевая архитектура, на которой они были осуществлены, отразила эту клиент серверную модель, где персональный компьютер пользователя (клиент) действует как машина-источник запросов, а более мощная машина сервер, с которой осуществляется связь через локальную или глобальную сеть, действует как система обслуживания запросов.

  • а - распределенное отображение данных;
  • б - удаленное отображение данных (эмуляция терминала);
  • в - распределенное приложение (серверы приложений);
  • г - доступ к удаленной базе данных (серверы баз данных);
  • д - доступ к распределенной базе данных (интеграция/репликация баз данных)

Сетевые аппаратные средства

Сети базируются на аппаратных средствах и программном обеспечении. Сетевые аппаратные средства обеспечивают физические связи между различными узлами сети и типично включают:

  • сетевые интерфейсные платы, одна на каждый персональный компьютер;
  • сетевые устройства (концентраторы, мосты, маршрутизаторы, переключатели и так далее). Предназначены для того, чтобы подключать различные сегменты сети и гарантировать, что пакеты информации посылают предназначенному адресату;
  • сетевые кабели, которые соединяют каждую сетевую карту с концентратором или переключателем.

Сетевые карты (адаптеры)

Сетевые интерфейсные платы (Network interface cards - NIC), обычно называемые сетевыми картами, используются, чтобы подключить персональный компьютер к сети, и обеспечивают физическую связь между сетевой средой и внутренней шиной компьютера (модель открытых систем - уровни 1 и 2).

Большинство сетевых адаптеров разработано для специфического типа сети, протокола и носителей, хотя некоторые могут обслуживать различные сети.

  • а - сетевая интерфейсная карта;
  • б - концентратор;
  • в - трансивер.

Концентраторы/повторители

Концентратор/повторитель (размножитель, иногда - «хаб», от hub) используется, чтобы соединить два или больше сетевых сегмента с любым типом среды передачи (носителя). В больших сетях качество передачи начинает ухудшаться, как только сегменты превышают некоторую максимальную длину. Концентраторы усиливают сигнал, что позволяет увеличить размер сегмента. Пассивные концентраторы просто отправляют любые пакеты данных, которые они получают от одной из рабочих станций, ко всем остальным. Активные концентраторы, также иногда называемые «многопортовые повторители» (multiport repeaters), восстанавливают форму сигнала, разрушающегося в процессе прохождения по сети.

Число и тип концентраторов в любом домене коллизий для сетей 10Base-T Ethernet ограничены величинами, приведенными в таблице.

В то время как повторители позволяют размерам локальных сетей превышать нормальные пределы расстояния, они все же ограничивают количество поддерживаемых узлов. Такое оборудование, как мосты, маршрутизаторы и коммутаторы, однако, позволяют локальным сетям становиться значительно крупнее благодаря их способности поддерживать полные сегменты Ethernet на каждом порту.

Мосты

Мосты - устройства передачи данных, которые используются преимущественно на уровне 2 модели взаимодействия открытых систем (устройства уровня передачи данных).

Мосты также называют устройствами «с промежуточным накоплением», потому что они анализируют пакет Ethernet полностью перед решением о фильтрации или отправлении. Большинство мостов - самообучающиеся, они формируют таблицу пользовательских адресов Ethernet на сегменте, анализируя пакеты, проходящие сеть.

Маршрутизаторы

Маршрутизация - управление перемещением информации через множество сетей от источника до адресата. Она противопоставляется коммутации (соединению), которая исполняет подобную же функцию. Различие заключается в том, что соединение происходит на уровне 2 (уровень связи) ВОС, тогда как маршрутизация - на уровне 3 (сетевой).

Маршрутизаторы используют информацию, входящую в состав каждого пакета, чтобы направить его от одной локальной сети до другой, а также связываются друг с другом и обмениваются информацией, которая позволяет им определять оптимальный маршрут через сложную сеть из многих локальных сетей. Чтобы сделать это, маршрутизаторы формируют и поддерживают «таблицы маршрутизации», которые содержат различные виды информации о маршрутах в зависимости от используемых алгоритмов. Получив пакет, маршрутизатор выбирает оптимальный маршрут, посылая пакет на тот или иной следующий маршрутизатор.

Коммутаторы

Коммутаторы - расширение концепции мостов локальных сетей. Они работают на уровне 2 (уровень связи) ВОС, осуществляя управление потоком данных, обеспечивая физическую (в противоположность логической) адресацию и управляя доступом к физической среде.

Сетевые коммутаторы могут связать четыре, шесть, десять или больше сетей вместе и имеют два основных типа - «сокращенный» и «с промежуточным накоплением». Коммутаторы первого типа работают быстрее, потому что они исследуют только адрес назначения перед отправлением пакета на сегмент адресата. Коммутатор с промежуточным накоплением, наоборот, принимает и анализирует полный пакет перед отправлением адресату.

Приемопередатчики. Приемопередатчики (трансиверы) используются, чтобы соединять узлы с различными средами передачи Ethernet. Большинство компьютеров и сетевых интерфейсных плат содержат встроенный 10Base-T или 10Base-2 приемопередатчик, позволяя им связываться непосредственно с Ethernet, не требуя внешнего приемопередатчика. Много устройств Ethernet обеспечиваются соединителем интерфейса устройств доступа, чтобы позволить пользователю соединяться с любым типом сред передачи через внешний приемопередатчик. Соединитель интерфейса устройств доступа состоит из пары разъемов типа D с 15 штырьками. «Толстые» (10Base-5) кабели также используют приемопередатчики, чтобы осуществлять подключения.

Для сетей быстрого Ethernet был разработан интерфейс, названный «Интерфейс, независимый от среды» (Media Independent Interface), предлагающий гибкий способ поддержать подключения на скорости 100 Мбит/с. Это - популярный способ подключения к 100Base-FX устройств быстрого Ethernet на основе проводной связи.

Внутренние (домашние) сети

К концу 2002 года более 30 млн североамериканских домашних хозяйств имели два или более компьютеров - и они столкнулись с теми же проблемами, что и предприниматели почти 20 годадами ранее: неспособность совместно использовать компьютеры и периферийные ресурсы или распределять информацию между пользователями.

Сети Ethernet

Для приспособления сетевых технологий к данному рынку производители разработали домашние сетевые комплекты, состоящие из дешевых сетевых адаптеров, недорогого концентратора и программного обеспечения простой конфигурации.

Кабели UTP Категорий 3 или 5, требуемые сетями Ethernet, доступны в компьютерных магазинах и «все для дома», а также устанавливаются во многих новостройках. Задача коммуникации не трудна, особенно в ситуациях, где все персональные компьютеры расположены в одной комнате типа домашнего офиса.

Рисунок показывает, как сеть Ethernet может быть установлена в доме. Внутренние или внешние сетевые адаптеры размещены в каждом персональном компьютере. Периферийные устройства без прямого подключения к Ethernet (например, принтер) разделены через сетевой компьютер. Каждый персональный компьютер связан с концентратором по кабелю Категории 3 или 5. Концентратор управляет связью между устройствами на сети. Единичный канал на 56 Кбит/с - ISDN, аналоговый, кабельный или ADSL-модем, обеспечивает общедоступное подключение к Интернет.

Сети на телефонных линиях

Такие сети используют в своих интересах незанятую пропускную способность существующих телефонных проводов. Информация передается на частотах, много больших, чем обычная телефонная сеть (POTS) или цифровые услуги ISDN (xDSL), так что нет конфликта с использованием телефонной линии для звуковой телефонии, факса или услуг Интернет, эксплуатирующих те же самые телефонные цепи.

Используется технология разделения общей полосы пропускания - частотное мультиплексирование (frequency division multiplexing - FDM). Здесь полная полоса пропускания делится на несколько полос, называемых каналами, используя фильтры. Каждый вид трафика - аналоговый (голос) и цифровой (данные, аудио и видео) - использует различные каналы.

Первая спецификация, выпущенная осенью 1998 года Альянсом по домашним сетям (Home Phoneline Networking Alliance - HomePNA), приняла метод доступа к носителям IEEE 802.3, по существу обеспечивая 1 Мбит/с Ethernet по телефонным линиям. Последующая версия - HomePNA 2.0, завершенная в конце 1999 года, использует цифровую обработку сигналов (технология, встроенная в микросхемы), чтобы предложить более высокую эффективность, лучшее приспособление к узкополосным линиям, увеличивая силу сигнала и улучшая фильтрацию шума от близлежащих приборов. Устройства, основанные на HomePNA 2.0, могут поддерживать скорости передачи до 10 Мбит/с.

В типичных домашних сетях на телефонных линиях внутренние или внешние сетевые адаптеры установлены в каждом персональном компьютере и включены в близлежащее телефонное гнездо. Принтеры или другие устройства, включая одновременный доступ к Интернет через канал на 56 Кбит/с (ISDN, аналоговый, кабельный или ADSL-модем), могут быть разделены между персональным компьютером.

Сети на линиях электропитания

Эти сети устроены наподобие рассмотренных выше, но используют для связи цепи электропитания или силовые линии электропередачи. Внутренние или внешние сетевые адаптеры установлены в каждом персональном компьютере и подключаются в близлежащую розетку электропитания.

Технологии сетей на силовых линиях используют разнообразие методов доступа к носителю, включая множественный доступ с опросом несущей и разрешением конфликтов (CSMA/CD), датаграммный коллективный доступ (datagram sensing multiple access - DSMA), централизованную эстафетную передачу (centralised token passing - CTP).

Кроме того, здесь также используется технология модуляции, именуемая кодированием со сдвигом частот (frequency shift keying - FSK) для передачи цифровых сигналов. Кодирование со сдвигом частот использует две или больше различных частот в узкой полосе, одна определяет «1», другая «0» двоичного кода.

Сети на силовых линиях имеют те же плюсы, что и сети на телефонных линиях, однако имеются и недостатки. Во-первых, они не обеспечивают таких скоростей, как другие сетевые среды передачи, в связи с высоким уровнем помех. Типичные скорости располагаются от 50 до 350 кбит/с. Во-вторых, поскольку единый кабель электропитания подводится к множеству домов и квартир, всегда возможна или утечка информации, или внешнее проникновение. Поэтому требуется или установка частотных фильтров на силовые кабели, или шифровка данных, или иные защитные мероприятия.

Беспроводные сети

Беспроводные локальные сети (WLAN) предлагают дополнительные преимущества для потребителей - подвижность. Потребители имеют возможность передвигаться внутри или снаружи их домов и оставаться подключенными к Интернет или к другим ресурсам сети. Инсталляция проста, потому что не требуется никаких проводов, и беспроводные сетевые компоненты могут быть установлены где угодно в доме.

Конечные пользователи обращаются к WLAN через адаптеры беспроводной локальной сети, которые реализуются как платы PCMCIA в портативных компьютерах, ISA или PCI-платы в настольных компьютерах или встроены в карманные (ручные) компьютеры. Адаптеры WLAN обеспечивают интерфейс между клиентами сетевой операционной системой через антенну; характер беспроводного подключения прозрачен для сетевой операционной системы.

На рисунке показано, как беспроводная сеть может быть установлена в доме. Внутренние или внешние адаптеры установлены на каждом персональном компьютере. Принтеры или другие периферийные устройства могут быть разделены через подсоединение к персональному компьютеру. Устройство пункта доступа соединяется с цифровой абонентской линией или кабельным модемом и обеспечивает высокоскоростной доступ к Интернет для всей сети.

Все современные локальные сети делятся на два вида:

Одноранговые локальные сети - сети, где все компьютеры равноправны: каждый из компьютеров может быть и сервером, и клиентом. Пользователь каждого из компьютеров сам решает, какие ресурсы будут предоставлены в общее пользование и кому

Локальные сети с цетрализованным управлением . В сетях с централизованным управлением политика безопасности общая для всех пользователей сети.

В зависимости от назначения и размера локальной сети применяются либо одноранговые сети, либо сети с централизованным управлением.

Рис. 1.

Рис. 2. Активная звезда

Рис. 3. Пассивная звезда



Рис. 4.

Подробное описание

Все многообразие компьютерных сетей можно классифицировать по группе признаков:

  • 1) Территориальная распространенность;
  • 2) Ведомственная принадлежность;
  • 3) Скорость передачи информации;
  • 4) Тип среды передачи;

По территориальной распространенности сети могут быть локальными, глобальными, и региональными. Локальные - это сети, перекрывающие территорию не более 10 м2, региональные - расположенные на территории города или области, глобальные на территории государства или группы государств, например, всемирная сеть Internet.

По принадлежности различают ведомственные и государственные сети. Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети - сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.

Компьютеры могут соединяться кабелями, образуя различную топологию сети (звездная, шинная, кольцевая и др.).

Следует различать компьютерные сети и сети терминалов (терминальные сети). Компьютерные сети связывают компьютеры, каждый из которых может работать и автономно. Терминальные сети обычно связывают мощные компьютеры (майнфреймы), а в отдельных случаях и ПК с устройствами (терминалами), которые могут быть достаточно сложны, но вне сети их работа или невозможна, или вообще теряет смысл. Например, сеть банкоматов или касс по продажи авиабилетов. Строятся они на совершенно иных, чем компьютерные сети, принципах и даже на другой вычислительной технике.

В классификации сетей существует два основных термина: LAN и WAN.

LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе; использование высокоскоростных каналов.

WAN (Wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame Relay), через которую могут «разговаривать» между собой различные компьютерные сети.

Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

Рассмотренные выше виды сетей являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети ориентированы на обслуживание любых пользователей.

Локальной сетью обычно называют несколько независимых компьютеров, которые соединены между собой какими-то проводами. Если говорить более грамотным техническим языком, - снабжены коммуникационным оборудованием и подключены к единому каналу передачи данных. Если посмотреть на локальную сеть со стороны - это вечно спотыкающиеся о провода люди, крики пользователей «у всех есть сеть?», лазерный принтер, давно перекрывший свой месячный ресурс печати и страдающий хронической бумажной недостаточностью.

Согласно определению сети ЭВМ международной организации по стандартизации, сеть ЭВМ - это последовательная бит-ориентированная передача информации между связанными друг с другом независимыми устройствами. Эта сеть обычно находится в частном ведении пользователя и занимает некоторую ограниченную территорию.

Понятие «локальная вычислительная сеть» - ЛВС (LAN - Local Area Network) больше относится к географически ограниченным понятиям. Компьютеры такой сети обычно расположены на небольшом расстоянии друг от друга (порядка 1 километра). Это обеспечивает «локальность» сети. Типичная локальная сеть - это сеть масштаба офиса. Большие расстояния подразумевают уже другие способы обмена данными и другие виды коммуникационного оборудования, отличные от применяемых в локальных сетях. Такие сети принято называть «глобальными».

Для чего нужна локальная сеть?

Традиционно локальные сети развивались как средство разделения дорогостоящих ресурсов. При этом основными ресурсами, требующими разделения, являлись дисковая память и печатающие устройства. Разделение каждого из этих ресурсов обладает некоторыми особенностями.

Для разделения такого ресурса, как печатающее устройство, организуется очередь, в которую пользователь помещает печатаемые файлы. В порядке поступления файлы извлекаются из очереди и выводятся на печать системными средствами сети. Обычно файлы, ожидающие печати, копируются на жесткий диск управляющего печатью компьютера, чтобы не задерживать работу остальных пользователей сети. Обычно для управления печатью используется отдельный, выделенный компьютер, который называется принт-сервер. Если осуществлять печать на принтер, подключенный к обычной рабочей станции сети, то, во-первых, пользователь этого компьютера заработает нервное истощение, дожидаясь, пока у него появится возможность поработать, и, во-вторых, такая схема ненадежна из-за возможных конфликтов программного обеспечения. Обойтись без подключения принтера к компьютеру позволяют специальные сетевые карты, которые вставляются в принтер и обеспечивают непосредственное подключение принтера к сети.



Разделение дисков сложнее в управлении, так как требует одновременного доступа со стороны всех пользователей. При одновременном доступе замедляется и скорость доступа к разделяемому диску. Проще всего обеспечить монопольный доступ каждой программы к своим файлам. По мере развития локальных сетей появилась необходимость одновременной работы нескольких программ с одним и тем же файлом так, чтобы изменения, вносимые одной программой, не затирали изменений другой программы. Это еще больше усложнило управление файлами на разделяемых дисках.

Следует отметить, что основная нагрузка в сети сосредоточивается обычно на компьютерах, которые выделяют в сеть свои ресурсы. С этим связано то, что все компьютеры в сети разделяются на те, которые выделяют свои ресурсы в сеть, и те, которые выделенные ресурсы потребляют. Их обычно называют, соответственно, серверами и рабочими станциями. Следует отметить, что последний термин в литературе иногда употребляется в другом смысле (мощный персональный компьютер для решения сложных математических задач). Часто вместо термина «рабочая станция» используется термин «клиент».

Сервер (server) - специальный выделенный компьютер, который предназначен для разделения файлов, удаленного запуска приложений, обработки запросов на получение информации из баз данных и обеспечения связи с общими внешними устройствами: дисководами CD-ROM, принтерами и модемами. Основные категории серверов: файловые серверы (file server), серверы приложений (application server) и серверы баз данных (database server).

Рабочая станция (workstation), иначе называемая клиентом (client), - персональный компьютер, пользующийся услугами, предоставляемыми серверами приложений и баз данных. Операционная система Windows 98 (95) предназначена для рабочих станций.

На сервере и на рабочей станции запускается различное сетевое программное обеспечение. Иногда программное обеспечение сервера предусматривает параллельную работу пользователя непосредственно на сервере в среде DOS, а иногда нет. Программное обеспечение сервера сложнее и потребляет больше ресурсов компьютера (памяти и процессора). И при этом чем больше требований вы предъявляете к характеристикам сети, тем больше потребуется ресурсов для работы программы сервера. И верхней границы уровня требований, похоже, нет...

Существует довольно большой выбор сетевых программ, различных по возможностям и потребляемым ресурсам. Но прежде чем начать работы по установке у себя локальной сети, необходимо ответить на вопрос - нужна ли она вообще и для чего. Чем более четкое будет представление об этом, тем более значительных результатов удастся достичь после установки сети.

Рассмотрим преимущества, которые дает локальная сеть.

Разделение аппаратных ресурсов: позволяет сократить расходы на аппаратное обеспечение, управлять со всех присоединенных рабочих станций периферийными устройствами, такими как: лазерные принтеры, цветные принтеры, устройства памяти большой емкости, накопители на магнитной ленте, оптические дисковые устройства резервного копирования, сетевые сканеры...

Разделение данных: разделение данных предоставляет возможность доступа и управления базами данных с периферийных рабочих мест, нуждающихся в информации. Позволяет совместно использовать документы, электронные таблицы и другие файлы, а также обеспечивает простой доступ к информации и совершенствование коллективной работы над проектами.

Разделение программных средств: разделение программных средств снижает затраты на программное обеспечение, предоставляет возможность одновременного использования централизованных, ранее установленных приложений.

Разделение ресурсов процессора: при разделении ресурсов процессора возможно использование вычислительных мощностей при обработке данных другими системами, входящими в сеть.

Электронная почта: с помощью электронной почты происходит интерактивный обмен информацией между рабочей станцией и другими станциями, установленными в вычислительной сети.

Для совместного использования принтеров иногда достаточно специального устройства, называемого «коммутатором». К такому устройству подключается кабель от одного принтера и нескольких компьютеров. В простейшем случае - это ручной переключатель. Существуют аналогичные коммутаторы для передачи файлов с одного компьютера на другой. В ряде случаев можно обойтись просто нечастым переносом информации на дискете.

Без локальной сети не обойтись, если необходимо получить оперативный доступ нескольких компьютеров к одной базе данных. Несмотря на сложность установки, локальная сеть существенно облегчает решение и многих других вопросов совместной эксплуатации большого числа персональных компьютеров.

Сети на «шнурках»

Существуют программы, типа LapLink или коммуникационных средств программы Norton Commander, которые занимают минимум ресурсов сервера и соединяют только одну машину с сервером посредством портов типа СОМ или LPT. При использовании Norton Commander на сервере нельзя работать в DOS параллельно работе коммуникационной программы, а при использовании LapLink - можно. Как вы понимаете, сервер и клиент в данном случае - это два компьютера, отстоящие друг от друга на два-три метра.

Одноранговые сети

Во время раннего периода развития персональных компьютеров одноранговая сетевая архитектура (peer-to-peer network - равный к равному), или сеть с равноправными узлами, была наиболее общепринятым способом совместного использования файлов и периферийных устройств. Одноранговые сети потребляют достаточно мало ресурсов компьютера, однако интенсивная работа в сети существенно замедляет непосредственную работу пользователя на сервере. Для работы этих сетей необходимы специальные сетевые адаптеры. Наиболее известные сетевые программы этого класса - NetWare Lite, Lantastic, Windows for Workgroups, Windows 9х.

Одной из первых одноранговых сетевых систем была система PC LAN фирмы IBM, разработанная в кооперации с Microsoft. PC LAN была проста в установке и управлении, так что фирмам не нужно было специально нанимать администратора сети для поддержания ее работоспособности. Однако, когда количество соединенных в такую сеть компьютеров приближалось к сотне, характеристики системы резко ухудшались. Чтобы справиться с узким местом в системе разделения файлов, организации должны были использовать выделенные высокопроизводительные файловые серверы, которые одновременно могли служить серверами приложений. Одной из первых фирм, разработавших настоящую сетевую операционную систему, функционировавшую на выделенном сервере, была компания Novell. Кроме того, она же разработала одноранговую сетевую операционную систему NetWare Lite.

В одноранговой сети любой компьютер может совместно использовать каталоги на жестком диске и принтеры с любым другим подключенным к нему компьютером. Большая часть программного обеспечения для одноранговых сетей, в том числе и Windows 9х, позволяет разделять дисководы CD-ROM, а некоторые - и модем. Основные ограничения для одноранговых сетей следующие:

Количество компьютеров в одноранговой сети должно быть в пределах 10-30, в зависимости от интенсивности обмена информационными сообщениями в сети.

Не принято использовать компьютеры, связанные одноранговой сетью, в качестве серверов приложений (сервер приложений - компьютер, который позволяет другим компьютерам запускать Windows и приложения с него, а не со своих локальных дисков). Такие сети предназначены только для разделения ресурсов, таких как файлы, многопользовательские базы данных, модемы, сканеры или принтеры.

Работа приложений на компьютере, служащем сервером в одноранговой сети, ухудшается, когда ресурсы этого компьютера используются другими. Можно управлять степенью ухудшения производительности, назначая более высокие приоритеты локальным задачам, однако при этом замедляется доступ других пользователей сети к файлам и принтерам в сети.

Сети с выделенным сервером - NOVELL NETWARE

Основным элементом сети является файл-сервер. Основной его задачей является обеспечение совместного использования дисковых систем, подключенных к нему. Кроме этого, файл-сервер является центральным звеном управления всей остальной сетью. Все другие работы, например, электронная почта, так или иначе тоже проводятся через файл-сервер.

Сети NetWare имеют достаточно мощную систему управления правами доступа к ресурсам сети, позволяют совместно использовать дисковые системы большой емкости, печатающие устройства, плоттеры и др.

Потребление аппаратных ресурсов компьютера здесь значительно выше, чем у описанных выше сетей, но при этом достигаются более высокие показатели работы сети. При этом на сервере меньше чувствуется замедление работы пользователя при повышении загрузки сети.

Компоненты локальной вычислительной сети

Для работы локальной сети на ваших компьютерах необходимо выполнить следующие действия. Во-первых, соединить ваши компьютеры посредством какой-либо коммуникационной аппаратуры. Во-вторых, запустить на этих компьютерах специальное сетевое программное обеспечение, которое, собственно, и будет выполнять необходимые вам операции в локальной сети. В качестве коммуникационной аппаратуры обычно используют специализированные адаптеры сети, которые вставляются в свободный слот компьютера. Адаптеры соединяются между собой кабелем и различным дополнительным оборудованием. Следует подчеркнуть, что объединению подлежат лишь однотипные адаптеры (например, адаптеры Arcnet с Arcnet, Ethernet с Ethernet, но не Arcnet с Ethernet). Тип кабеля и набор дополнительного оборудования определяется специально для каждого конкретного случая. При установке любой коммуникационной аппаратуры необходимо убедиться в наличии драйвера к этой аппаратуре в запускаемом вами сетевом программном обеспечении. Иначе ваши программы просто не увидят ваше «железо».

Те, кто не может позволить себе приобрести специальные адаптеры, могут попробовать соединить свои компьютеры через стандартные разъемы СОМ и LРТ.

Типичная компьютерная сеть включает в себя пять основных компонентов.

1. Основным составляющим элементом сети является настольный ПК, такой, как IBM-совместимый компьютер или Macintosh. Его называют «клиентом» или «рабочей станцией» (реже - автоматизированными рабочими местами или сетевыми станциями).

2. Сервером обычно является высокопроизводительный ПК с жестким диском большой емкости. Он играет роль центрального узла, на котором пользователи ПК могут хранить свою информацию, печатать файлы и обращаться к его сетевым средствам. В одноранговых сетях выделенный сервер отсутствует.

3. Каждый компьютер сети, включая сервер, оснащен платой сетевого адаптера (сетевым интерфейсом, модулем, картой). Адаптер вставляется в свободное гнездо (слот) материнской платы. Эти адаптеры связывают компьютер с сетевым кабелем. Многие ПК поставляются уже готовыми к работе в сети и включают в себя сетевой адаптер. Для построения сетей применяют 8-, 16- и 32-битовые сетевые платы. Сервер обычно оснащают 32-битовой картой. Для обычных рабочих станций используют недорогие 16-битовые.

4. Сетевые кабели связывают друг с другом сетевые компьютеры и серверы. В качестве сетевого кабеля могут применяться и телефонные линии. Основные типы сетевого кабеля:

Витая пара (twisted pair) - позволяет передавать информацию со скоростью 10 Мбит/с (либо 100 Мбит/с), легко наращивается. Длина кабеля не может превышать 1000 м при скорости передачи 10 Мбит/с. Иногда используют экранированную витую пару, т. е. витую пару, помещенную в экранирующую оболочку.

Толстый Ethernet - коаксиальный кабель с волновым сопротивлением 50 Ом. Его называют также желтый кабель (yellow cable). Обладает высокой помехозащищенностью. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м.

Тонкий Ethernet - это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. Соединения с сетевыми платами производятся при помощи специальных (байонетных) разъемов и тройниковых соединений. Расстояние между двумя рабочими станциями без повторителей может составлять максимум 185 м, а общее расстояние по сети - 1000 м.

Оптоволоконные линии - наиболее дорогой тип кабеля. Скорость передачи по ним информации достигает нескольких гигабит в секунду. Допустимое удаление более 50 км. Внешнее воздействие помех практически отсутствует.

5. Совместно используемые периферийные устройства - жесткие диски большой емкости, принтеры, цветные и слайд-принтеры, дисководы CD-ROM и накопители на магнитной ленте для резервного копирования.

Поскольку сети ПК состоят в основном из «клиентов» и «серверов», их часто называют сетями клиент/сервер.

Сеть включает в себя три основных программных компонента:

1. Сетевую операционную систему, которая управляет функционированием сети. Например, она обеспечивает совместное использование ресурсов и включает в себя программное обеспечение для управления сетью. Операционная система состоит из серверного ПО, которое функционирует на сервере, и клиентского программного обеспечения, работающего на каждом настольном ПК.

Сетевая операционная система (network operating system) выполняется на сервере и обеспечивает его функционирование. Среди сетевых операционных систем преобладают Novell NetWare, Windows NT, Unix.

2. Сетевые приложения и утилиты - это программы, инсталлируемые и выполняемые на сервере. Они включают в себя ПО коллективного пользования и поддержки рабочих групп, такие как электронная почта, средства ведения календаря и планирования. Кроме того, в число таких программных средств могут входить сетевые версии персональных приложений, например, текстовых процессоров, электронных таблиц, программ презентационной графики и приложений баз данных. Наконец, к данному ПО относятся такие утилиты, как программы резервного копирования, позволяющие архивировать хранимые на сервере файлы и приложения.

3. Бизнес-приложения - это программы, реализующие в компании конкретные бизнес-функции. По своей природе они могут быть «горизонтальными» и применяться в компаниях самого разного типа для общих деловых операций (таких как бухгалтерский учет и ввод заказов) либо «вертикальными» и поддерживать осуществление конкретных коммерческих операций, например, оценку недвижимости, страхование либо использоваться в области здравоохранения или фирмах, оказывающих юридические услуги.

Все современные локальные сети делятся на два вида: одноранговые и с централизованным управлением.

В одноранговой сети (peer-to-peer network) все компьютеры равноправны -- каждый компьютер может быть и сервером, и клиентом. Пользователь компьютера сам решает, какие ресурсы будут предоставлены в общее пользование и кому. Компьютеры в одноранговых сетях организуются в рабочие группы (workgroups). Одноранговые сети, как правило, небольшие -- от 2 до 10 компьютеров. В такой сети обычно нет лица, ответственного за настройку и поддержку политики безопасности сети -- администратора (network administrator).

Политика безопасности (security policy) -- это совокупность настроек, определяющая права пользователей сети на доступ к обшим ресурсам. В одноранговой сети каждый пользователь ведет свою собственную политику безопасности, определяя, каким образом другие пользователи могут использовать его общие ресурсы. По мере добавления новых компьютеров в рабочую группу она становится трудно управляемой, так как управление политикой безопасности децентрализовано. Например, в сети из семи компьютеров необходимо вести семь отдельных политик безопасности, чтобы поддерживать работу семи пользователей.

В сетях с централизованным управлением политика безопасности общая для всех пользователей сети (рис. 3). В операционной системе Microsoft Windows сетевая структура, состоящая из серверов и пользовательских компьютеров, совместно использующих общую политику безопасности, называется доменом (domain). Помимо политики безопасности домен хранит базу данных пользовательских бюджетов. Пользовательский бюджет (user account) содержит информацию, которая определяет пользователя в сети. Эта информация включает имя и пароль пользователя, требуемые для регистрации пользователя в сети, права (user rights) и полномочия (permissions).

Топология сети обусловливает ее технические характеристики. В частности, выбор той или иной топологии влияет:

  • 1) на состав необходимого сетевого оборудования и его характеристики;
  • 2)возможность расширения сети и ее надежность; S способ управления сетью.

Существуют три основных топологии сети: «шина», «звезда» и «кольцо».

«Шина» -- пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

Данную топологию целесообразно применять только в небольших локальных сетях.

В топологии «звезда» каждая рабочая станция подсоединена непосредственно к центральному компоненту -- концентратору, при этом станции не имеют непосредственной связи друг с другом. Пакеты данных от каждого компьютера направляются к концентратору, а он переправляет пакеты к месту назначения.

Концентраторы являются центральным звеном в топологии «звезда», однако в настоящее время они становятся одним из стандартных компонентов большинства ЛВС, так как часто встречаются комбинированные топологии.

Среди концентраторов выделяют активные и пассивные.

Известен еще один вид топологии -- «кольцо», в которой рабочие станции соединены кабелем в кольцо. В наше время топология «кольцо» применяется довольно редко.

В первоначальном варианте топологии «кольцо» локальных сетей использовалось одноранговое соединение между рабочими станциями. Поскольку соединения такого типа имели форму кольца, они назывались замкнутыми (closed). Преимущество локальных сетей этого типа заключается в предсказуемом времени передачи пакета адресату. Чем больше устройств в подключено к кольцу, тем дольше интервал задержки. Недостаток топологии «кольцо» в том, что при выходе из строя одной рабочей станции прекращает функционировать вся сеть.

Сложные топологии являются расширениями и (или) комбинациями основных физических топологий. Сами по себе основные топологии целесообразно использовать только в не больших локальных сетях. Возможность расширения сетей основных топологий чрезвычайно ограничена. Гораздо выгоднее создать сложную топологию, объединив для этого в одну локальную сеть сегменты различных топологий

Разновидность сложных топологий представляют иерархические топологии, предполагающие использование более чем одного уровня концентраторов. Каждый уровень выполняет отдельную сетевую функцию. На нижний ярус концентраторов возлагается задача обработки запросов ьа соединение между рабочими станциями и серверами. Ярусы более высоких уровней агрегируют низшие ярусы. Иерархическое упорядочение оптимальным образом подходит для локальных сетей среднего и большого размеров при условии, что предполагаются их расширение и повышение интенсивности трафика.

Компьютерная сеть состоит из трех основных компонентов, работающих согласованно:

  • 1) оборудования (концентраторов, коммутаторов, мостов, сетевых адаптеров);
  • 2) коммуникационных каналов (кабелей, разъемов);
  • 3) сетевой операционной системы.

Аппаратное обеспечение локальных сетей. В качестве физического интерфейса, или соединения, между компьютером и сетевым кабелем выступают платы сетевого адаптера. Платы вставляются в слоты расширения всех сетевых компьютеров и серверов. Чтобы обеспечить физическое соединение между компьютером и сетью, к соответствующему разъему, или порту, платы (после ее установки) подключается сетевой кабель.

Для измерения быстродействия сети в технике введена специальная величина -- мегабит в секунду (Мбит/с). Так как один байт информации состоит из восьми бит, то для того, чтобы определить, сколько символов (байт) в секунду теоретически способна пропустить ЛВС, необходимо величину быстродействия сети разделить на восемь. На практике максимальное быстродействие сети никогда не реализуется. Фактически ЛВС не может работать быстрее, чем самый медленный ее компонент. Если осуществляется передача 1,44 Мбайт данных от дискового накопителя рабочей станции к файловому серверу, затраченное время будет включать не только время на передачу данных, но и время чтения этих данных с диска рабочей станции, время на оперирование данными. Адаптер с большим быстродействием будет быстрее передавать данные по кабелю, а следовательно, и раньше получать ответ.

Когда вы пользуетесь рабочей станцией, она почти во всех отношениях ведет себя как автономный ПК. Однако есть и некоторые отличия. На экране во время загрузки операционной системы появляются дополнительные сообщения, которые информируют вас о том, что сетевая операционная система загружается в рабочую станцию. Вы должны сообщить сетевому программному обеспечению ваше имя пользователя (или идентификационный номер) и пароль перед началом работы Это называется процедурой входа в систему.

После подключения к ЛВС вы видите дополнительные дисковые накопители, ставшие вам доступными. Когда вы распечатываете служебные записки или сообщения, они печатаются на принтере, который может находиться далеко от вашего рабочего места.

В противоположность рабочей станции файловый сервер -- это компьютер, который обслуживает все рабочие станции. Он осуществляет совместное использование файлов, размещаемых на его дисках. Файловые серверы это обычно быстродействующие специализированные компьютеры, часто оснащенные только монохромным монитором и недорогой клавиатурой, потому что они, как правило, интерактивно не используются пользователями ЛВС. Однако файловый сервер почти всегда содержит не менее одного быстродействующего накопителя большой емкости.

Серверы должны быть высококачественными и высоконадежными машинами, потому что при обслуживании всей компьютерной сети они многократно выполняют работу обычной рабочей станции. Их накопители также должны быть высоконадежными и иметь большой срок службы.

Чаще всего файловый сервер выполняет только эти функции. Но иногда в малых ЛВС файл-сервер используется еще и в качестве рабочей станции.

Однако если пользователь такой рабочей станции выключит ее, то вся сеть также будет выключена, к тому же, обслуживание всей компьютерной сети -- большая работа, которая почти не оставляет ресурсов для работы в качестве рабочей станцииНа практике, однако, большинство рабочих станций в течение большей части времени пассивны, по крайней мере с точки зрения доступа к файлам на накопителе. Поэтому пока другие рабочие станции не используют сервер, ваша может задействовать 100% его ресурсов.